Skip to content
/ FLife Public
forked from ladisk/FLife

Vibration Fatigue by Spectral Methods

License

Notifications You must be signed in to change notification settings

jasasonc/FLife

 
 

Repository files navigation

FLife - Vibration Fatigue by Spectral Methods

Obtaining vibration fatigue life in the spectral domain. For general theoretical background on vibration fatigue (structural dynamics, uniaxial/multiaxial fatigue, non-Gaussianity, non-stationarity, etc), please see Slavič et al. [1], for theoretical background on different spectral domain methods, please see the review article by Zorman et al. [2] or original articles as given in the docstring of the methods.

The review article [2] results are completely reproducible with ipynb file: https://github.com/ladisk/FLife/blob/main/data/Vibration%20fatigue%20by%20spectral%20methods%20-%20a%20review%20with%20open-source%20support.ipynb

See the documentation for more information.

Installing this package

Use pip to install it by:

$ pip install FLife

Supported methods in the frequency-domain

  • Narrowband,
  • Wirsching Light,
  • Ortiz Chen,
  • Alpha 0.75,
  • Tovo Benasciutti,
  • Dirlik,
  • Zhao Baker,
  • Park,
  • Jun Park,
  • Jiao Moan,
  • Sakai Okamura,
  • Fu Cebon,
  • modified Fu Cebon,
  • Low's bimodal,
  • Low 2014,
  • Lotsberg,
  • Huang Moan,
  • Gao Moan,
  • Single moment,
  • Bands method

Rainflow (time-domain) is supported using the fatpack (four-points algorithm) and rainflow (three-points algorithm) packages.

Simple example

Here is a simple example on how to use the code:

import FLife
import numpy as np


dt = 1e-4
x = np.random.normal(scale=100, size=10000)

C = 1.8e+22  # S-N curve intercept [MPa**k]
k = 7.3 # S-N curve inverse slope [/]

# Spectral data
sd = FLife.SpectralData(input=(x, dt))

# Rainflow reference fatigue life
# (do not be confused here, spectral data object also holds the time domain data)
rf = FLife.Rainflow(sd)

# Spectral methods
dirlik = FLife.Dirlik(sd)
tb = FLife.TovoBenasciutti(sd)
print(f'          Rainflow: {rf.get_life(C = C, k=k):4.0f} s')
print(f'            Dirlik: {dirlik.get_life(C = C, k=k):4.0f} s')
print(f'Tovo Benasciutti 2: {tb.get_life(C = C, k=k, method="method 2"):4.0f} s')

SpectralData

SpectralData object contains data, required for fatigue-life estimation: power spectral density (PSD), spectral moments, spectral band estimators and others parameters.

SpectralData is instantiated with input parameter:

  • input = 'GUI' - PSD is provided by user via GUI (graphically and tabulary)
  • input = (PSD, freq) - tuple of PSD and frequency vector is provided.
  • input = (x, dt) - tuple of time history and sampling period is provided.

GUI

sd1 = FLife.SpectralData(input='GUI')
sd2 = FLife.SpectralData()

This is default argument. User is prompted to enter PSD graphically and/or tabulary.

GUI - PSD input

Stationary Gaussian time-history is generated, if parameters T and fs are provided. Otherwise, time-history is generated subsequently, when Rainflow fatigue-life is calculated. Optional parameter for time-history is random generator instance rg (numpy.random._generator.Generator), which determines phase of random process.

seed = 111
rg =  np.random.default_rng(seed)
# time-history can be generated at SpectralData object instantiation. Sampling frequency `fs` and signal length `T` parameter are needed.
sd3 = FLife.SpectralData(input='GUI', T=1, fs=1e5, rg=rg)

time_history = sd3.data
# time-history duration and sampling period are dependent on frequency vector length and step
T = sd3.t # time-history duration
dt = sd3.dt # sampling period
time = np.arange(0, T, dt)
plt.plot(time, time_history)

(PSD, freq)

PSD and frequency arrays are given as input. Both arrays must be of type np.ndarray.

Stationary Gaussian time-history is generated, if parameters T and fs are provided. Otherwise, time-history is generated subsequently, when Rainflow fatigue-life is calculated. Optional parameter for time-history is random generator instance rg (numpy.random._generator.Generator), which determines phase of random process.

seed = 111
rg =  np.random.default_rng(seed)
freq = np.arange(0,300)
f_low, f_high = 100, 120
A = 1 # PSD value
PSD = np.interp(freq, [f_low, f_high], [A,A], left=0, right=0) # Flat-shaped one-sided PSD

sd4 = FLife.SpectralData(input = (PSD, freq))
# time-history can be generated at SpectralData object instantiation. Sampling frequency `fs` and signal length `T` parameter are needed.
sd5 = FLife.SpectralData(input = (PSD, freq), T=1, fs=1e5, rg=rg)

time_history = sd5.data
# time-history duration and sampling period are dependent on frequency vector length and step
T = sd5.t # time-history duration
dt = sd5.dt # sampling period
time = np.arange(0, T, dt)
plt.plot(time, time_history)

(x, dt)

Time history x and sampling period dt are given as input. x must be of type np.ndarray and dt of type float, int.

seed = 111
rg =  np.random.default_rng(seed)
freq = np.arange(0,100)
f_low, f_high = 40, 70
A = 1 # PSD value
PSD = np.interp(freq, [f_low, f_high], [A,A], left=0, right=0) # Flat-shaped one-sided PSD

time, signal = FLife.tools.random_gaussian(freq=freq, PSD=PSD, T=10, fs=1e3, rg=rg)
dt = time[1]

sd6 = FLife.SpectralData(input=(signal,dt))

# Get PSD data from spectralData object
freq = sd6.psd[:,0]
PSD = sd6.psd[:,1]
plt.plot(freq, PSD)

Spectral Methods

Currently 20 spectral methods are supported. Methods for broadband process are organized into 4 subgroups:

  • Narrowband correction factor; methods are based on narrowband approximation, accounting for broadband procces with correction factor.
  • RFC PDF approximation; methods are based on approximation of Rainflow Probability Density Function.
  • Combined fatigue damage - cycle damage combination; methods are based on splitting of PSD of broadband process into N narrowband approximations and accounting the formation of distinct categories of cycles.
  • Combined fatigue damage - narrowband damage combination; methods are based on splitting of PSD of broadband process into N narrowband approximations and summing narrowband damages by suitable damage conbination rule.

Spectral methods

SpectralData instance is prerequisite for spectral method instantiation. For multimodal spectral methods, PSD splitting type can be specified:

  • PSD_splitting=('equalAreaBands', N) - PSD is divided into N equal area bands.
  • PSD_splitting=('userDefinedBands', [f_1_ub, f_2_ub, ..., f_i_ub, ..., f_N_ub])) - Band upper boundary frequency f_i_ub is taken as boundary between two bands, i.e. i-th upper boundary frequency equals i+1-th lower boundary frequency.
nb = FLife.Narrowband(sd)
dirlik = FLife.Dirlik(sd)
tb = FLife.TovoBenasciutti(sd)
jm1 = FLife.JiaoMoan(sd)
jm2 = FLife.JiaoMoan(sd, PSD_splitting=('equalAreaBands', 2)) # same as jm1, PSD is divided in 2 bands with equal area
jm3 = FLife.JiaoMoan(sd, PSD_splitting=('userDefinedBands', [80,150])) #80 and 150 are bands upper limits [Hz]

PDF

Some spectral methods supports PDF stress cycle amplitude via get_PDF(s, **kwargs) function:

s = np.arange(0,np.max(x),.001)
plt.plot(s,nb.get_PDF(s), label='Narrowband')
plt.plot(s,dirlik.get_PDF(s), label='Dirlik')
plt.plot(s,tb.get_PDF(s, method='method 2'), label='Tovo-Benasciutti')
plt.legend()
plt.show()

Vibration-fatigue life

Vibration-fatigue life is returned by function get_life(C,k,**kwargs):

C = 1.8e+22  # S-N curve intercept [MPa**k]
k = 7.3 # S-N curve inverse slope [/]

life_nb = nb.get_life(C = C, k=k)
life_dirlik = dirlik.get_life(C = C, k=k)
life_tb = tb.get_life(C = C, k=k, method='method 1')

Rainflow

Vibration-fatigue life can be compared to rainflow method. When Rainflow class is instantiated, time-history is generated and assigned to SpectralData instance, if not already exist. By providing optional parameter rg (numpy.random._generator.Generator instance) phase of stationary Gaussian time history is controlled.

sd = FLife.SpectralData(input='GUI') # time history is not generated at this point

seed = 111
rg =  np.random.default_rng(seed)
rf1 = FLife.Rainflow(sd T=100, fs=1e3) # time history is generated and assigned to parameter SpectralData.data
rf2 = FLife.Rainflow(sd, T=100, fs =1e3,  rg=rg) # time history is generated and assigned to parameter SpectralData.data, signal phase is defined by random generator
rf_life_3pt = rf2.get_life(C, k, algorithm='three-point')
rf_life_4pt = rf2.get_life(C, k, algorithm='four-point', nr_load_classes=1024)

error_nb = FLife.tools.relative_error(life_nb, rf_life_3pt)
error_dirlik = FLife.tools.relative_error(life_dirlik, rf_life_3pt)
error_tb = FLife.tools.relative_error(life_tb, rf_life_3pt)

Multiaxial vibration fatigue

Multiaxial fatigue life estimation can be performed by using one of the available frequency domain multiaxial criteria to convert multiaxial stress state into equivalent uniaxial stress state. Resulting equivalent uniaxial stress state can be used with all spectral methods, provided by FLife.

Supported multiaxial criteria

  • Maximum normal stress on critical plane
  • Maximum shear stress on critical plane
  • Maximum normal and shear stress on critical plane
  • EVMS (Equivalent von Misses stress)
  • Carpinteri-Spagnoli criterion
  • Frequency-based multiaxial rainflow criterion
  • Thermoelasticity-based criterion
  • EVMS adaptation for out-of-phase components
  • LiWI approach
  • COIN-LiWI method

Here is a simple example of using EVMS criterion on a multiaxial PSD for the whole FEM model.

import FLife
import numpy as np

# Load multiaxial PSD data
test_PSD = np.load('data/test_multiaxial_PSD_3D.npy')
freq=np.arange(0,240,3)
input_dict = {'PSD': test_PSD, 'f': freq}

# Create EquivalentStress object
eqs = FLife.EquivalentStress(input=input_dict,T=1,fs=5000)

# Use multiaxial criterion
eqs.EVMS()

# manual critical point selection
eqs.select_critical_point(point_index=331)

# GUI critical point selection
#FLife.visualize.set_mesh(eqs,'data/L_shape.vtk')
#FLife.visualize.pick_point(eqs)

# Define material properties
C = 1.8e+22  # S-N curve intercept [MPa**k]
k = 7.3  # S-N curve inverse slope [/]

# Calculate fatigue life in seconds
rf = FLife.TovoBenasciutti(eqs)
fatigue_life = rf.get_life(C=C, k=k)
print(f'Fatigue life: {fatigue_life:.2f} s')

Instead of manual point selection, critical point can be selected with GUI by right clickling on the model. Heatmap of equivalent stress can be shown at a desired frequency, set by the slider on the bottom-right side of the GUI.

GUI Multiaxial

Some criteria are defined for multiaxial amplitude spectra instead of multiaxial PSD. In this case, input must be a multiaxial amplitude sprectrum (size (f,6) or (f,3) for single point, and (N,f,6) or (N,f,3) for whole FEM model.) After the uniaxial equivalent stress is calculated using the chosen criteria, PSD is calculated automatically and can be used with all available spectral methods.

Here is a simple example of using one of the criteria defined for the amplitude spectrum:

import FLife
import numpy as np

# Load multiaxial PSD data
test_amplitude_spectrum_3D = np.load('data/test_multiaxial_amplitude_spectrum_3D.npy')
freq=np.arange(0,240,3)
input_dict = {'amplitude_spectrum': test_amplitude_spectrum_3D, 'f': freq}

# Create EquivalentStress object
eqs = FLife.EquivalentStress(input=input_dict,T=1,fs=5000)

# Use multiaxial criterion
eqs.coin_liwi(k_a=1.70, k_phi=0.90)

# manual critical point selection
eqs.select_critical_point(point_index=331)

# GUI critical point selection
#FLife.visualize.set_mesh(eqs,'data/L_shape.vtk')
#FLife.visualize.pick_point(eqs)

# Define material properties
C = 1.8e+22  # S-N curve intercept [MPa**k]
k = 7.3  # S-N curve inverse slope [/]

# Calculate fatigue life in seconds
rf = FLife.TovoBenasciutti(eqs)
fatigue_life = rf.get_life(C=C, k=k)
print(f'Fatigue life: {fatigue_life:.2f} s')
References:
  1. Janko Slavič, Matjaž Mršnik, Martin Česnik, Jaka Javh, Miha Boltežar. Vibration Fatigue by Spectral Methods, From Structural Dynamics to Fatigue Damage – Theory and Experiments, ISBN: 9780128221907, Elsevier, 1st September 2020, see Elsevier page.
  2. Aleš Zorman and Janko Slavič and Miha Boltežar. Vibration fatigue by spectral methods—A review with open-source support, Mechanical Systems and Signal Processing, 2023, see https://doi.org/10.1016/j.ymssp.2023.110149

pytest Docs Status zenodo

About

Vibration Fatigue by Spectral Methods

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 75.7%
  • Python 24.3%