-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
de1e9f2
commit 941752f
Showing
2 changed files
with
125 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,124 @@ | ||
# This file is part of Jaxley, a differentiable neuroscience simulator. Jaxley is | ||
# licensed under the Apache License Version 2.0, see <https://www.apache.org/licenses/> | ||
|
||
import os | ||
import time | ||
|
||
import numpy as np | ||
import pytest | ||
from jax import jit | ||
|
||
import jaxley as jx | ||
from jaxley.channels import HH | ||
from jaxley.connect import sparse_connect | ||
from jaxley.synapses import IonotropicSynapse | ||
|
||
|
||
def build_net(num_cells, artificial=True, connect=True, connection_prob=0.0): | ||
_ = np.random.seed(1) # For sparse connectivity matrix. | ||
|
||
if artificial: | ||
comp = jx.Compartment() | ||
branch = jx.Branch(comp, 2) | ||
depth = 3 | ||
parents = [-1] + [b // 2 for b in range(0, 2**depth - 2)] | ||
cell = jx.Cell(branch, parents=parents) | ||
else: | ||
dirname = os.path.dirname(__file__) | ||
fname = os.path.join(dirname, "swc_files", "morph.swc") | ||
cell = jx.read_swc(fname, nseg=4) | ||
net = jx.Network([cell for _ in range(num_cells)]) | ||
|
||
# Channels. | ||
net.insert(HH()) | ||
|
||
# Synapses. | ||
if connect: | ||
sparse_connect( | ||
net.cell("all"), net.cell("all"), IonotropicSynapse(), connection_prob | ||
) | ||
|
||
# Recordings. | ||
net[0, 1, 0].record(verbose=False) | ||
|
||
# Trainables. | ||
net.make_trainable("radius", verbose=False) | ||
params = net.get_parameters() | ||
|
||
net.to_jax() | ||
return net, params | ||
|
||
|
||
@pytest.mark.runtime | ||
@pytest.mark.parametrize( | ||
"num_cells, artificial, connect, connection_prob, voltage_solver, identifier", | ||
( | ||
# Test a single SWC cell with both solvers. | ||
pytest.param(1, False, False, 0.0, "jaxley.stone", 0), | ||
pytest.param(1, False, False, 0.0, "jax.sparse", 1), | ||
# Test a network of SWC cells with both solvers. | ||
pytest.param(10, False, True, 0.1, "jaxley.stone", 2), | ||
pytest.param(10, False, True, 0.1, "jax.sparse", 3), | ||
# Test a larger network of smaller neurons with both solvers. | ||
pytest.param(1000, True, True, 0.001, "jaxley.stone", 4), | ||
pytest.param(1000, True, True, 0.001, "jax.sparse", 5), | ||
), | ||
) | ||
def test_runtime( | ||
num_cells: int, | ||
artificial: bool, | ||
connect: bool, | ||
connection_prob: float, | ||
voltage_solver: str, | ||
identifier: int, | ||
): | ||
delta_t = 0.025 | ||
t_max = 100.0 | ||
|
||
net, params = build_net( | ||
num_cells, | ||
artificial=artificial, | ||
connect=connect, | ||
connection_prob=connection_prob, | ||
) | ||
|
||
def simulate(params): | ||
return jx.integrate( | ||
net, | ||
params=params, | ||
t_max=t_max, | ||
delta_t=delta_t, | ||
voltage_solver=voltage_solver, | ||
) | ||
|
||
jitted_simulate = jit(simulate) | ||
|
||
start_time = time.time() | ||
_ = jitted_simulate(params).block_until_ready() | ||
compile_time = time.time() - start_time | ||
|
||
params[0]["radius"] = params[0]["radius"].at[0].set(0.5) | ||
start_time = time.time() | ||
_ = jitted_simulate(params).block_until_ready() | ||
run_time = time.time() - start_time | ||
|
||
compile_times = { | ||
0: 16.858529806137085, | ||
1: 0.8063809871673584, | ||
2: 5.4792890548706055, | ||
3: 6.175129175186157, | ||
4: 2.755805015563965, | ||
5: 13.303060293197632, | ||
} | ||
run_times = { | ||
0: 0.08291006088256836, | ||
1: 0.596994161605835, | ||
2: 0.8518729209899902, | ||
3: 5.746302127838135, | ||
4: 1.3585789203643799, | ||
5: 12.48916506767273, | ||
} | ||
|
||
tolerance = 1.2 | ||
assert compile_time < compile_times[identifier] * tolerance | ||
assert run_time < run_times[identifier] * tolerance |