Releases: jolibrain/joliGEN
Releases · jolibrain/joliGEN
joliGEN v4.0.0
This main version adds many improvements as well as video generation with diffusion and super resolution with supervised metrics, including for consistency models.
Features
- adding separate control of vertical and horizontal flips as augmentation (a7a6109)
- aligned crops for super-resolution (8418470)
- allow tf32 on cudnn (367cd91)
- better Canny for cond image with background (c3c7de6)
- consistency models with supervised losses (ed701ad)
- data: random bbox for inpainting (764646d)
- input and output multiple and different channels (6bcd64c)
- load models without stricness (073d57c)
- max number of visualized images from train/test set (24f0e81)
- ml: add option for vid inference (c3f83b7)
- ml: add supervised loss with GANs with aligned datasets (d7f5119)
- ml: added LPIPS supervised loss with GANs (70e8ee4)
- ml: adding example of CM+discriminator (b6b8b64)
- ml: batched prompts for turbo (023dd54)
- ml: Canny can use a range of dropout probabilities (7b4c860)
- ml: canny dropout for vid (06ce7d7)
- ml: CM with added discriminator (10516e0)
- ml: consistency models for pix2pix (cd92712)
- ml: CUT turbo (cdd508f)
- ml: debug args (a11172b)
- ml: debug crop (51c9fd6)
- ml: debug for canny inference (930f3ce)
- ml: debug for canny threshold (dca0bfa)
- ml: debug for vid metrics (7c57471)
- ml: debug inference_vid for canny (17b9a29)
- ml: debug vid for frame limit (ff97c03)
- ml: debug vid metric (ba43725)
- ml: DISTS supervised loss for aligned data (56273ef)
- ml: FID,KID,MSID for multiple test sets and non 8 bit images (74b0e65)
- ml: fix canny range option (c102ee0)
- ml: fix inference regeneration and crop canny (f75196f)
- ml: HDiT for GANs (58bedff)
- ml: HDiT generator (9a95f1f)
- ml: jenkins test inference print (b68ab53)
- ml: L1 or MSE for diffusion multiscale loss (06e3d6a)
- ml: metric fvd for video (6d458a3)
- ml: min-SNR loss weight for diffusion, 2303.09556 (c802119)
- ml: modif for horse2zebra prompt (b66a954)
- ml: multiple test sets (6db745c)
- ml: option for max_sequence_lenght of video generation (12cfc1b)
- ml: prompt for inference horze2zebra (b8e9929)
- ml: random canny inside batch (70919cd)
- ml: rename dataloader for video generation (98b1315)
- ml: The implementation of UNetVid for generating video with temporal consistency and inference (43b7018)
- ml: unchange fill_img_with_canny with random drop canny (a2ed3fc)
- ml: UNetVid for generating video with bs > 1 (00f11bc)
- ml: vid try autoregressive inference (5b92031)
- multi-prompt local works (b98746a)
- multiprompt (2bffc8b)
- multistep lr scheduler (01c3558)
- train_finetune for finetuning gans/others and removing / adding losses and networks (2f26503)
- unet_vid motion module fine-grained configuration (813e435)
Bug Fixes
- aligne dataset, resize domain A only if necessary (4127571)
- allowing for no NCE with cut (9d8ff9b)
- clamp bbox to image size during inference (fc3874d)
- cm at test time (706356b)
- cm with conditioning (0fd2d14)
- consistency model schedule upon resume (88d03f9)
- consistency models with input/output different channels (db61821)
- crash in inference script, errors in documentation (f99dd34)
- cut options at test time (dcd2438)
- D input is G output size with gans (194f42b)
- diff across input/output channels in gans (6845816)
- diff real/fake not needed + cleanup (5cbd1f0)
- diffusion inference for images > 8bits (aefdc38)
- diffusion with input and output of different channel size (cd264de)
- disable hdit flop count (8c449f8)
- fix pytest rootdir (1fe0e80)
- further lowering the input test size of cut-turbo (6914731)
- gan inference script with prompts ([cef7681](https://github.com/jolibrain/j...
joliGEN v3.0.0
This release adds Consistency Models and REST API for GAN and diffusion models inference.
Features
- api inference for gan and diffusion (6fd43d8)
- inference server option returns base64 image (5bc8f44)
- ml: consistency models as diffusion models for inpainting, with conditioning (de9d725)
- scripts: canny thresholds grid plots (6d94ffa)
- specialized helpers for each model (f361414)
Bug Fixes
- correct help for image generation scripts (76ce6b4)
- enable model export during training (79525b8)
- not force reloading dinov2 models (800967d)
- ref_in option (2927574)
- resize image to test base64 api diffusion (2708a6f)
Docker images:
- GPU (CUDA only):
docker pull docker.jolibrain.com/joligen_server:v3.0.0
- All images available from https://docker.jolibrain.com/#!/taglist/joligen_server
joliGEN 2.0.0
Features
- ml: dinov2 discriminator with registers (7fcf790)
- ml: DinoV2 feature-based projected discriminator (c67ffa8)
- ml: SigLIP based projected discriminators (5e10a86)
- optimization eps value control (0556987)
- pix2pix task for palette (7e47139)
- scripts: adding a video generation script for gans (85d1922)
Bug Fixes
- amp for discriminators (811ba3d)
- APA augmentation on multiple discriminators (becb3eb)
- docker release script (f1c56de)
- end of training metrics computation (e1f213c)
- init_metrics directory and metrics on CPU (0b77943)
- load size for rectangular images, resize ref image for inference (965e1bf)
- ml: inference for diffusion with reference image (df8c504)
Docker images:
- GPU (CUDA only): `docker pull docker.jolibrain.com/joligen_server:v$tag`
- All images available from https://docker.jolibrain.com/#!/taglist/joligen_server
v1.0.0
joliGEN: Generative AI Toolset (Changelog)
1.0.0 (2023-10-06)
Docker
- GPU (CUDA only): `docker pull docker.jolibrain.com/joligen_server:v1.0.0`
- All images available from https://docker.jolibrain.com/#!/taglist/joligen_server
Features
- add a server endpoint to delete files (30b2143)
- add choices for all options (ed43b82)
- add ddim inference (0196134)
- add DDPM tutorial on the VITON-HD dataset (c932d73)
- add FastAPI server to run training (f517462)
- add lambda for semantic losses (aab53fe)
- add LPIPS metric (f1e0526)
- add miou compute to tests (c0033ef)
- add new metrics (f3c84cd)
- add palette model (b7db294)
- add psnr metric (7135458)
- add sampling options to test (a2958dc)
- add SRC and hDCE losses (ddfcc97)
- add test for doc generation (41526f8)
- add test on cycle_gan_semantic_mask (3eeff76)
- add tests for reference image dataloaders (ae6405e)
- added D noise to CUT with semantics (31aa4a3)
- added optimizers and options (505cac2)
- allow control of projected discriminator interpolation (dbffec5)
- allow ViT custom resolution at D projector init (82e6e83)
- api: display current commit at startup (6f90be8)
- aug: affine transforms for semantics (170b0f8)
- aug: configurable online mask delta augmentation by x and y axis (dfa6459)
- aug: select bbox category through the path sanitization functionality (a8d3f48)
- auto download segformer weights (083cc5e)
- backward while computing MSE criterion loss (1b87906)
- bbox as sam prompt (a39c5bd)
- bbox prompt for sam (1fa9cae)
- bilinear interpolation of attention heads when dimension does not match, useful for segformer G (eed9494)
- bw model export (8e43efa)
- check code format when PR (eeb56cb)
- choices for canny random thresholds (9573fc1)
- class weights for semantic segmentation network with cross entropy (4274f1e)
- classifier training on domain B (fa343c0)
- commandline saving (6eb503e)
- commandline script for joligan server calls (48ae23b)
- compute_feats for unet G (9f1109e)
- conditioning for palette (b9854ee)
- config json for client script (174dce9)
- context for D (b0d3c7b)
- contrastive classifier noise (7193e0e)
- contrastive loss for D (deb2ec4)
- cut_semantic model (b20a943)
- D accuracy (26ead91)
- data: random noise in images for object insertion (42cf13d)
- DDP (68f24da)
- deceiving D for GAN training (2e2113f)
- depth model as projector (10ffc28)
- depth prediction and depth discriminator (01bc62b)
- diff augment (054509c)
- diffusion inference with old and new models (9c4c5a9)
- display augmented images (2126253)
- display test images (a1de083)
- doc options auto update (1b08f92)
- doc: add JSON config examples (5332213)
- doc: basic server REST API (a757d17)
- doc: datasets (dfe2343)
- doc: DDPM conditioning training and inference examples (e694a29)
- doc: models (be1fe34)
- doc: refactored README with links to documentation (b5bf121)
- doc: reference image conditioning (70aeb32)
- doc: remove overview (2360527)
- doc: server, client, docker (68a5b96)
- doc: tips (3fea9ca)
- doc: training (a4b720d)
- doc: update inference models and examples (3c43a7b)
- doc: updated FAQ (88b417c)
- doc: updated model export (e692f78)
- edge detection techniques (78202ea)
- export for unet_mha (b4c3cfd)
- extract bbox from img (fb64ef0)
- first recut model (aaa4069)
- first test (4ac8cd9)
- fixed bbox size for online creation and bbox size randomization ([5cd6227]...