Skip to content

Releases: jolibrain/joliGEN

joliGEN v4.0.0

19 Dec 09:28
Compare
Choose a tag to compare

This main version adds many improvements as well as video generation with diffusion and super resolution with supervised metrics, including for consistency models.

Features

  • adding separate control of vertical and horizontal flips as augmentation (a7a6109)
  • aligned crops for super-resolution (8418470)
  • allow tf32 on cudnn (367cd91)
  • better Canny for cond image with background (c3c7de6)
  • consistency models with supervised losses (ed701ad)
  • data: random bbox for inpainting (764646d)
  • input and output multiple and different channels (6bcd64c)
  • load models without stricness (073d57c)
  • max number of visualized images from train/test set (24f0e81)
  • ml: add option for vid inference (c3f83b7)
  • ml: add supervised loss with GANs with aligned datasets (d7f5119)
  • ml: added LPIPS supervised loss with GANs (70e8ee4)
  • ml: adding example of CM+discriminator (b6b8b64)
  • ml: batched prompts for turbo (023dd54)
  • ml: Canny can use a range of dropout probabilities (7b4c860)
  • ml: canny dropout for vid (06ce7d7)
  • ml: CM with added discriminator (10516e0)
  • ml: consistency models for pix2pix (cd92712)
  • ml: CUT turbo (cdd508f)
  • ml: debug args (a11172b)
  • ml: debug crop (51c9fd6)
  • ml: debug for canny inference (930f3ce)
  • ml: debug for canny threshold (dca0bfa)
  • ml: debug for vid metrics (7c57471)
  • ml: debug inference_vid for canny (17b9a29)
  • ml: debug vid for frame limit (ff97c03)
  • ml: debug vid metric (ba43725)
  • ml: DISTS supervised loss for aligned data (56273ef)
  • ml: FID,KID,MSID for multiple test sets and non 8 bit images (74b0e65)
  • ml: fix canny range option (c102ee0)
  • ml: fix inference regeneration and crop canny (f75196f)
  • ml: HDiT for GANs (58bedff)
  • ml: HDiT generator (9a95f1f)
  • ml: jenkins test inference print (b68ab53)
  • ml: L1 or MSE for diffusion multiscale loss (06e3d6a)
  • ml: metric fvd for video (6d458a3)
  • ml: min-SNR loss weight for diffusion, 2303.09556 (c802119)
  • ml: modif for horse2zebra prompt (b66a954)
  • ml: multiple test sets (6db745c)
  • ml: option for max_sequence_lenght of video generation (12cfc1b)
  • ml: prompt for inference horze2zebra (b8e9929)
  • ml: random canny inside batch (70919cd)
  • ml: rename dataloader for video generation (98b1315)
  • ml: The implementation of UNetVid for generating video with temporal consistency and inference (43b7018)
  • ml: unchange fill_img_with_canny with random drop canny (a2ed3fc)
  • ml: UNetVid for generating video with bs > 1 (00f11bc)
  • ml: vid try autoregressive inference (5b92031)
  • multi-prompt local works (b98746a)
  • multiprompt (2bffc8b)
  • multistep lr scheduler (01c3558)
  • train_finetune for finetuning gans/others and removing / adding losses and networks (2f26503)
  • unet_vid motion module fine-grained configuration (813e435)

Bug Fixes

  • aligne dataset, resize domain A only if necessary (4127571)
  • allowing for no NCE with cut (9d8ff9b)
  • clamp bbox to image size during inference (fc3874d)
  • cm at test time (706356b)
  • cm with conditioning (0fd2d14)
  • consistency model schedule upon resume (88d03f9)
  • consistency models with input/output different channels (db61821)
  • crash in inference script, errors in documentation (f99dd34)
  • cut options at test time (dcd2438)
  • D input is G output size with gans (194f42b)
  • diff across input/output channels in gans (6845816)
  • diff real/fake not needed + cleanup (5cbd1f0)
  • diffusion inference for images > 8bits (aefdc38)
  • diffusion with input and output of different channel size (cd264de)
  • disable hdit flop count (8c449f8)
  • fix pytest rootdir (1fe0e80)
  • further lowering the input test size of cut-turbo (6914731)
  • gan inference script with prompts ([cef7681](https://github.com/jolibrain/j...
Read more

joliGEN v3.0.0

02 Feb 08:09
Compare
Choose a tag to compare

This release adds Consistency Models and REST API for GAN and diffusion models inference.

Features

  • api inference for gan and diffusion (6fd43d8)
  • inference server option returns base64 image (5bc8f44)
  • ml: consistency models as diffusion models for inpainting, with conditioning (de9d725)
  • scripts: canny thresholds grid plots (6d94ffa)
  • specialized helpers for each model (f361414)

Bug Fixes

  • correct help for image generation scripts (76ce6b4)
  • enable model export during training (79525b8)
  • not force reloading dinov2 models (800967d)
  • ref_in option (2927574)
  • resize image to test base64 api diffusion (2708a6f)

Docker images:

joliGEN 2.0.0

13 Nov 14:30
Compare
Choose a tag to compare

Features

  • ml: dinov2 discriminator with registers (7fcf790)
  • ml: DinoV2 feature-based projected discriminator (c67ffa8)
  • ml: SigLIP based projected discriminators (5e10a86)
  • optimization eps value control (0556987)
  • pix2pix task for palette (7e47139)
  • scripts: adding a video generation script for gans (85d1922)

Bug Fixes

  • amp for discriminators (811ba3d)
  • APA augmentation on multiple discriminators (becb3eb)
  • docker release script (f1c56de)
  • end of training metrics computation (e1f213c)
  • init_metrics directory and metrics on CPU (0b77943)
  • load size for rectangular images, resize ref image for inference (965e1bf)
  • ml: inference for diffusion with reference image (df8c504)

Docker images:

v1.0.0

06 Oct 10:20
Compare
Choose a tag to compare

joliGEN: Generative AI Toolset (Changelog)

1.0.0 (2023-10-06)

Docker

Features

  • add a server endpoint to delete files (30b2143)
  • add choices for all options (ed43b82)
  • add ddim inference (0196134)
  • add DDPM tutorial on the VITON-HD dataset (c932d73)
  • add FastAPI server to run training (f517462)
  • add lambda for semantic losses (aab53fe)
  • add LPIPS metric (f1e0526)
  • add miou compute to tests (c0033ef)
  • add new metrics (f3c84cd)
  • add palette model (b7db294)
  • add psnr metric (7135458)
  • add sampling options to test (a2958dc)
  • add SRC and hDCE losses (ddfcc97)
  • add test for doc generation (41526f8)
  • add test on cycle_gan_semantic_mask (3eeff76)
  • add tests for reference image dataloaders (ae6405e)
  • added D noise to CUT with semantics (31aa4a3)
  • added optimizers and options (505cac2)
  • allow control of projected discriminator interpolation (dbffec5)
  • allow ViT custom resolution at D projector init (82e6e83)
  • api: display current commit at startup (6f90be8)
  • aug: affine transforms for semantics (170b0f8)
  • aug: configurable online mask delta augmentation by x and y axis (dfa6459)
  • aug: select bbox category through the path sanitization functionality (a8d3f48)
  • auto download segformer weights (083cc5e)
  • backward while computing MSE criterion loss (1b87906)
  • bbox as sam prompt (a39c5bd)
  • bbox prompt for sam (1fa9cae)
  • bilinear interpolation of attention heads when dimension does not match, useful for segformer G (eed9494)
  • bw model export (8e43efa)
  • check code format when PR (eeb56cb)
  • choices for canny random thresholds (9573fc1)
  • class weights for semantic segmentation network with cross entropy (4274f1e)
  • classifier training on domain B (fa343c0)
  • commandline saving (6eb503e)
  • commandline script for joligan server calls (48ae23b)
  • compute_feats for unet G (9f1109e)
  • conditioning for palette (b9854ee)
  • config json for client script (174dce9)
  • context for D (b0d3c7b)
  • contrastive classifier noise (7193e0e)
  • contrastive loss for D (deb2ec4)
  • cut_semantic model (b20a943)
  • D accuracy (26ead91)
  • data: random noise in images for object insertion (42cf13d)
  • DDP (68f24da)
  • deceiving D for GAN training (2e2113f)
  • depth model as projector (10ffc28)
  • depth prediction and depth discriminator (01bc62b)
  • diff augment (054509c)
  • diffusion inference with old and new models (9c4c5a9)
  • display augmented images (2126253)
  • display test images (a1de083)
  • doc options auto update (1b08f92)
  • doc: add JSON config examples (5332213)
  • doc: basic server REST API (a757d17)
  • doc: datasets (dfe2343)
  • doc: DDPM conditioning training and inference examples (e694a29)
  • doc: models (be1fe34)
  • doc: refactored README with links to documentation (b5bf121)
  • doc: reference image conditioning (70aeb32)
  • doc: remove overview (2360527)
  • doc: server, client, docker (68a5b96)
  • doc: tips (3fea9ca)
  • doc: training (a4b720d)
  • doc: update inference models and examples (3c43a7b)
  • doc: updated FAQ (88b417c)
  • doc: updated model export (e692f78)
  • edge detection techniques (78202ea)
  • export for unet_mha (b4c3cfd)
  • extract bbox from img (fb64ef0)
  • first recut model (aaa4069)
  • first test (4ac8cd9)
  • fixed bbox size for online creation and bbox size randomization ([5cd6227]...
Read more