-
Notifications
You must be signed in to change notification settings - Fork 53
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
66 additions
and
47 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
import hnn_core | ||
from hnn_core import jones_2009_model, simulate_dipole, Network | ||
import numpy as np | ||
import matplotlib as plt | ||
|
||
params = hnn_core.read_params('/home/mohamed/Desktop/PhD Thesis/auditory_evoked_simulation/HNN-AEF-main/HNN_Parameters/L_Contra.param') | ||
net = jones_2009_model() | ||
|
||
|
||
def martinotti_template(): | ||
from hnn_core.cell import Section, Cell | ||
|
||
cell_name = 'martinotti' | ||
pos = (5, 5, 5) | ||
# pos = net.pos_dict['L5_basket'].copy() | ||
|
||
end_pts = [[0, 0, 0], [0, 0, 39.]] | ||
sections = {'soma': Section(L=39., diam=20., cm=0.85, | ||
Ra=200., end_pts=end_pts)} | ||
sections['soma'].syns = ['gabaa', 'nmda'] | ||
|
||
synapses = { | ||
'gabaa': { | ||
'e': -80, | ||
'tau1': 0.5, | ||
'tau2': 5. | ||
}, | ||
'nmda': { | ||
'e': 0, | ||
'tau1': 1., | ||
'tau2': 20. | ||
} | ||
} | ||
sect_loc = dict(proximal=['soma'], distal=['soma']) | ||
|
||
return Cell(cell_name, pos, | ||
sections=sections, | ||
synapses=synapses, | ||
topology=None, | ||
sect_loc=sect_loc, | ||
gid=None) | ||
|
||
x1= np.linspace(0, 7, 7) | ||
y1= np.linspace(0, 5, 5) | ||
xv, yv = np.meshgrid(x1, y1) | ||
pos = list() | ||
for (x, y) in zip(xv.ravel(), yv.ravel()): | ||
pos.append((x, y, 0.)) | ||
|
||
# net._add_cell_type('L5_martinotti', pos= pos, cell_template=martinotti_template()) | ||
# net.plot_cells() | ||
|
||
weights_nmda_d1 = {'L2_basket': 0.019482, 'L2_pyramidal': 0.004317, | ||
'L5_pyramidal': 0.080074} | ||
synaptic_delays_d1 = {'L2_basket': 0.1, 'L2_pyramidal': 0.1, | ||
'L5_pyramidal': 0.1} | ||
net.add_evoked_drive( | ||
'evdist1', mu=63.53, sigma=3.85, numspikes=1, weights_ampa=None, | ||
weights_nmda=weights_nmda_d1, location='distal', | ||
synaptic_delays=synaptic_delays_d1, event_seed=4) | ||
|
||
simulate_dipole(net, tstop = 100, record_vsec=False) | ||
|
||
# net.add_connection(src_gids='L5_martinotti', target_gids='L5_pyramidal', loc='apical_tuft', receptor='gabaa', weight= 0.025 , delay=1.0 ,lamtha=70.0 , allow_autapses= False, probability=1) | ||
|
||
|