Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Blog article on "Demystifying activator on the data path" #5709

Merged
merged 18 commits into from
Mar 20, 2024
Merged
1 change: 1 addition & 0 deletions blog/config/nav.yml
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,7 @@ nav:
- releases/announcing-knative-v0-3-release.md
- releases/announcing-knative-v0-2-release.md
- Articles:
- articles/demystifying-activator-on-path.md
- articles/knative-eventing-vision.md
- articles/new_event_discovery_features.md
- articles/getting-started-blog-p2.md
Expand Down
280 changes: 280 additions & 0 deletions blog/docs/articles/demystifying-activator-on-path.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,280 @@
# Demystifying Activator on the data path

**Author: [Stavros Kontopoulos](https://www.linkedin.com/in/stavroskontopoulos), Principal Software Engineer @ RedHat**

_In this blog post, you will learn how to recognize when the activator is on the data path and what triggers that behavior._

The [activator](https://github.com/knative/serving/tree/main/docs/scaling#activator) acts as a component on the data path to enable traffic buffering when a service is scaled to zero.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit

Suggested change
The [activator](https://github.com/knative/serving/tree/main/docs/scaling#activator) acts as a component on the data path to enable traffic buffering when a service is scaled to zero.
The [activator](https://github.com/knative/serving/tree/main/docs/scaling#activator) is placed on on the data path to enable traffic buffering when a service is scaled to zero.

This reads a little clearer to me

One lesser-known feature of the activator is that it can act as a request buffer that handles back pressure, protecting a Knative service from overloading.
For this, a Knative service can define how much traffic it can handle using [annotations](https://knative.dev/docs/serving/autoscaling/autoscaling-targets/#configuring-targets).
The autoscaler component will use this information to calculate the number of pods needed to handle the incoming traffic for a specific Knative service.

In detail, when serving traffic, a Knative service can operate in two modes: the `proxy` mode and the `serve` mode.
When in proxy mode, the activator is on the data path (which means the incoming requests are routed through the activator component), and it will stay on the path until certain conditions are met (more on this later).
If these conditions are met, the activator will be removed from the data path, and the service will transition to serve mode.
For example, when a service scales from/to zero, the activator is added to the data path by default.
This default setting often confuses users, as the activator will not be removed from the path unless enough capacity is available.
This is by intention, as one of the activator's roles (as mentioned above) is to offer back pressure capabilities so that a Knative service is not overloaded by incoming traffic.
Comment on lines +12 to +17
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I would reverse the order of these two paragraphs -- the info on proxy/serve modes and activator on/off path is useful background (esp. for folks who don't know much about how the activator works), so I'd cover that first and then go into handling back pressure, etc.


## Background

The default pod autoscaler in Knative (KPA) is a sophisticated algorithm that uses metrics from pods to make scaling decisions.
Let's see in detail what happens when a new Knative service is created.

Once the user creates a new service the corresponding Knative reconciler creates a Knative `Configuration` and a Knative `Route` for that service.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

maybe also a link to the components spec

Then the Configuration reconciler creates a `Revision` resource and the reconciler for the latter will create a Pod Autoscaler(PA) resource along with the K8s deployment for the service.
ReToCode marked this conversation as resolved.
Show resolved Hide resolved
The Route reconciler will create the `Ingress` resource that will be picked up by the Knative net-* components responsible for managing traffic locally in the cluster and externally to the cluster.
ReToCode marked this conversation as resolved.
Show resolved Hide resolved

Now, the creation of the PA triggers the KPA reconciler, which goes through certain steps to set up an autoscaling configuration for the revision:

- creates an internal Decider resource that holds the initial desired scale in `decider.Status.DesiredScale`and
sets up a pod scaler via the multi-scaler component. The pod scaler calculates a new Scale result every two seconds and makes a decision based on the condition `decider.Status.DesiredScale != scaledResult.DesiredPodCount` whether to trigger a new reconciliation for the KPA reconciler. The goal is the KPA to get the latest scale result.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

maybe just state the condition rather than the code, something like "if the desired scale isn't equal to the pod count"


- creates a Metric resource that triggers the metrics collector controller to set up a scraper for the revision pods.

- calls a scale method that decides the number of wanted pods and also updates the K8s raw deployment that corresponds to the revision.

- creates/updates a ServerlessService (SKS) that holds info about the operation mode (proxy or serve) and stores the number of activators that should be used in proxy mode.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
- creates/updates a ServerlessService (SKS) that holds info about the operation mode (proxy or serve) and stores the number of activators that should be used in proxy mode.
- creates/updates a `ServerlessService` (SKS) that holds info about the operation mode (proxy or serve) and stores the number of activators that should be used in proxy mode.

The number of activators specified in the SKS depends on the capacity that needs to be covered.

- updates the PA and reports the active and wanted pods in the PA's status

!!! note

The SKS create/update event above triggers a reconciliation for the SKS from its specific controller that creates the required public and private K8s services so traffic can be routed to the raw K8s deployment.
Also, in the proxy mode, the SKS controller will pick up the number of activators and configure an equal number of endpoints for the revision's [public service](https://github.com/knative/serving/blob/main/docs/scaling/SYSTEM.md#data-flow-examples).
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
Also, in the proxy mode, the SKS controller will pick up the number of activators and configure an equal number of endpoints for the revision's [public service](https://github.com/knative/serving/blob/main/docs/scaling/SYSTEM.md#data-flow-examples).
Also, in proxy mode, the SKS controller will pick up the number of activators and configure an equal number of endpoints for the revision's [public service](https://github.com/knative/serving/blob/main/docs/scaling/SYSTEM.md#data-flow-examples).

In combination with the networking setup done by the net-* components (driven by the Ingress resource), this is roughly the end-to-end networking setup that needs to happen for a ksvc to be ready to serve traffic.


## Capacity and Operation Modes in Practice

As described earlier, the activator will be removed from the path, assuming enough capacity is available.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
As described earlier, the activator will be removed from the path, assuming enough capacity is available.
As described earlier, the activator will be removed from the path if enough capacity is available.

Let's see how this capacity is calculated, but before that, let's introduce two concepts: the `panic` and `stable` windows.
The `panic` window is the time duration that denotes a lack of capacity to serve the traffic. It happens usually with a sudden burst of traffic.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
The `panic` window is the time duration that denotes a lack of capacity to serve the traffic. It happens usually with a sudden burst of traffic.
The panic window is the time duration that denotes a lack of capacity to serve the traffic. It happens usually with a sudden burst of traffic.

The condition that describes when to enter the panic mode and start the panic window is:

```
dppc/readyPodsCount >= spec.PanicThreshold
```
where
```
dppc := math.Ceil(observedPanicValue / spec.TargetValue)
```

The `dppc` stands for desired panic pod count and expresses what autoscaler needs to achieve in panic mode.
The target value is the utilization in terms of concurrency that the autoscaler aims for and that is calculated as 0.7*(revision_total).
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
The target value is the utilization in terms of concurrency that the autoscaler aims for and that is calculated as 0.7*(revision_total).
The target value is the utilization in terms of concurrency that the autoscaler aims for and that is calculated as `0.7*(revision_total)`.

Revision total is the maximum possible value of the scaling metric that is permitted on the pod and defaults to 100 (container concurrency default).
The value 0.7 is the utilization factor for each replica and when that is reached we need to scale out.

**Note:** if the KPA metric Requests Per Second(RPS) is used then the utilization factor is 0.75.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
**Note:** if the KPA metric Requests Per Second(RPS) is used then the utilization factor is 0.75.
!!! note
If the KPA metric Requests Per Second(RPS) is used then the utilization factor is 0.75.


The `observedPanicValue` is the calculated average value seen during the panic window for the concurrency metric.
The panic threshold is configurable (default 2) and expresses the ratio of desired versus available pods.

After we enter panic mode in order to exit we need to have enough capacity for a period that is equal to the stable window size.
That also means that the autoscaler will try to get enough pods ready in order to increase the capacity.
Also, note here that when operating outside the panic mode the autoscaler does not use `dpcc` but a similar quantity:
`dspc := math.Ceil(observedStableValue / spec.TargetValue)` which is based on metrics during the stable period.

To quantify the idea of enough capacity and to deal with bursts of traffic we introduce the notion of the Excess Burst Capacity(EBC) that needs to be >=0.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
To quantify the idea of enough capacity and to deal with bursts of traffic we introduce the notion of the Excess Burst Capacity(EBC) that needs to be >=0.
To quantify the idea of enough capacity and to deal with bursts of traffic we introduce the notion of the Excess Burst Capacity(EBC) that needs to be nonnegative.

It is defined as:

```
EBC = TotalCapacity - ObservedPanicValue - TargetBurstCapacity(TBC).
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
EBC = TotalCapacity - ObservedPanicValue - TargetBurstCapacity(TBC).
EBC = TotalCapacity - ObservedPanicValue - TargetBurstCapacity

```

`TotalCapacity` is calculated as ready_pod_count*revision_total. The default TBC is set to 200.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
`TotalCapacity` is calculated as ready_pod_count*revision_total. The default TBC is set to 200.
`TotalCapacity` is calculated as `ready_pod_count*revision_total`. The default `TargetBurstCapacity` (TBC) is set to 200.


For the Knative Autoscaler it holds the following.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

unclear what the following refers to here... I'm assuming the important box, but I also usually assume those boxes are digressions from the main text...


!!! important
If EBC >=0 then we have enough capacity to serve the traffic and the activator will be removed from the path.

Now with the above defaults and given the fact that a request needs to stay around for some time in order for concurrency metrics to show enough load for the counted period, it means you can't get EBC>=0 with a hello-world example where requests finish pretty quickly.
The latter is often confusing for the newcomer as it seems that the Knative service never enters the serve mode.
In the next example, we will show the lifecycle of a Knative service that also moves to the serve mode and how EBC is calculated in practice.
Also, the example uses a sample app that controls how long a request stays around via a sleep operation, see section [Autoscale Sample App - Go](../../../../../docs/serving/autoscaling/autoscale-go/).
Thus, here is the service for the example that has a target concurrency value of 10 and tbc=10:

```
apiVersion: serving.knative.dev/v1
kind: Service
metadata:
name: autoscale-go
spec:
template:
metadata:
annotations:
autoscaling.knative.dev/target: "10"
autoscaling.knative.dev/target-burst-capacity: "10"
spec:
containers:
- image: ghcr.io/knative/autoscale-go:latest
```

The scenario we are going to demonstrate is to deploy the ksvc, let it scale down to zero, then send traffic for 10 minutes.
We then collect the logs from the autoscaler and visualize the EBC values, ready pods, and panic mode over time.
The graphs are shown next.

![Excess burst capacity over time](/blog/articles/images/ebc.png)
![Ready pods over time](/blog/articles/images/readypods.png)
![Panic mode over time](/blog/articles/images/panic.png)


Let's describe in detail what we see above. Initially when the ksvc is deployed there is no traffic and one pod is created by default for verification reasons.

Until the pod is up we have:
```bash
$ kubectl get sks
NAME MODE ACTIVATORS SERVICENAME PRIVATESERVICENAME READY REASON
autoscale-go-00001 Proxy 2 autoscale-go-00001 autoscale-go-00001-private Unknown NoHealthyBackends
```
When the pod is up we have:

```bash
$ kubectl get po
NAME READY STATUS RESTARTS AGE
autoscale-go-00001-deployment-6cc679b9d6-xgrkf 2/2 Running 0 24s

$ kubectl get sks
NAME MODE ACTIVATORS SERVICENAME PRIVATESERVICENAME READY REASON
autoscale-go-00001 Serve 2 autoscale-go-00001 autoscale-go-00001-private True
```

The reason why we are in Serve mode is that because EBC=0. When you enable debug logs, in the logs you get:

```
...
"timestamp": "2023-10-10T15:29:37.241575214Z",
"logger": "autoscaler",
"message": "PodCount=1 Total1PodCapacity=10.000 ObsStableValue=0.000 ObsPanicValue=0.000 TargetBC=10.000 ExcessBC=0.000",
```

EBC = 10 - 0 - 10 = 0

Note that due to the fact that there is no traffic we see no observations during panic or stable windows.
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You might need to explain stable / panic window before this?


Since there is no traffic we scale back to zero and sks is back to proxy mode:

```bash
$ kubectl get sks
NAME MODE ACTIVATORS SERVICENAME PRIVATESERVICENAME READY REASON
autoscale-go-00001 Proxy 2 autoscale-go-00001 autoscale-go-00001-private Unknown NoHealthyBackends
```

Let's send some traffic.

```bash
hey -z 600s -c 20 -q 1 -host "autoscale-go.default.example.com" "http://192.168.39.43:32718?sleep=1000"
```

!!! note

The experiment was run on Minikube and the [hey](https://github.com/rakyll/hey) tool was used for generating the traffic.
Comment on lines +171 to +173
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I would move this note to right around the graphs, as that's the first place that results / data are mentioned


Initially activator when receives a request, sends stats to the autoscaler which tries to scale from zero based on some initial scale (default 1):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
Initially activator when receives a request, sends stats to the autoscaler which tries to scale from zero based on some initial scale (default 1):
Initially when the activator receives a request, it sends stats to the autoscaler which tries to scale from zero based on some initial scale (default 1):


```
...
"timestamp": "2023-10-10T15:32:56.178498172Z",
"logger": "autoscaler.stats-websocket-server",
"caller": "statserver/server.go:193",
"message": "Received stat message: {Key:default/autoscale-go-00001 Stat:{PodName:activator-59dff6d45c-9rdxh AverageConcurrentRequests:1 AverageProxiedConcurrentRequests:0 RequestCount:1 ProxiedRequestCount:0 ProcessUptime:0 Timestamp:0}}",
"address": ":8080"
```

The autoscaler enters panic mode since we don't have enough capacity, EBC is 10*0 -1 -10 = -11
```
...
"timestamp": "2023-10-10T15:32:56.178920551Z",
"logger": "autoscaler",
"caller": "scaling/autoscaler.go:286",
"message": "PodCount=0 Total1PodCapacity=10.000 ObsStableValue=1.000 ObsPanicValue=1.000 TargetBC=10.000 ExcessBC=-11.000",

"timestamp": "2023-10-10T15:32:57.24099875Z",
"logger": "autoscaler",
"caller": "scaling/autoscaler.go:215",
"message": "PANICKING."
```
Later on as traffic continues we get proper statistics from activator closer to the rate:

```
...
"timestamp":"2023-10-10T15:32:56.949001622Z",
"logger":"autoscaler.stats-websocket-server",
"message":"Received stat message: {Key:default/autoscale-go-00001 Stat:{PodName:activator-59dff6d45c-9rdxh AverageConcurrentRequests:18.873756322609804 AverageProxiedConcurrentRequests:0 RequestCount:19 ProxiedRequestCount:0 ProcessUptime:0 Timestamp:0}}",
"address":":8080"

...
"timestamp":"2023-10-10T15:32:56.432854252Z",
"logger":"autoscaler",
"caller":"kpa/kpa.go:188",
"message":"Observed pod counts=kpa.podCounts{want:1, ready:0, notReady:1, pending:1, terminating:0}",

...
"timestamp":"2023-10-10T15:32:57.241052566Z",
"logger":"autoscaler",
"message":"PodCount=0 Total1PodCapacity=10.000 ObsStableValue=19.874 ObsPanicValue=19.874 TargetBC=10.000 ExcessBC=-30.000",
```
Since the pod is not up yet: EBC = 0*10 - floor(19.874) - 10 = -30

Given the new statistics kpa decides to scale to 3 pods at some point.

```
"timestamp": "2023-10-10T15:32:57.241421042Z",
"logger": "autoscaler",
"message": "Scaling from 1 to 3",
```

But let's see why is this is the case. The log above comes from the multi-scaler which reports a scaled result that contains EBC as reported above and a desired pod count for different windows.

Roughly the final desired number is (there is more logic that covers corner cases and checking against min/max scale limits)
derived from the dppc we saw earlier.
Comment on lines +231 to +232
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
Roughly the final desired number is (there is more logic that covers corner cases and checking against min/max scale limits)
derived from the dppc we saw earlier.
Roughly the final desired number is derived from the dppc we saw earlier (there is more logic that covers corner cases and checking against min/max scale limits).


In this case the target value is 0.7*10=10. So we have for example for the panic window: dppc=ceil(19.874/7)=3
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
In this case the target value is 0.7*10=10. So we have for example for the panic window: dppc=ceil(19.874/7)=3
In this case the target value is 0.7*10=10. So we have for example for the panic window: `dppc=ceil(19.874/7)=3`


As metrics get stabilized and revision is scaled enough we have:

```
"timestamp": "2023-10-10T15:33:01.320912032Z",
"logger": "autoscaler",
"caller": "kpa/kpa.go:158",
"message": "SKS should be in Serve mode: want = 3, ebc = 0, #act's = 2 PA Inactive? = false",

...
"logger": "autoscaler",
"caller": "scaling/autoscaler.go:286",
"message": "PodCount=3 Total1PodCapacity=10.000 ObsStableValue=16.976 ObsPanicValue=15.792 TargetBC=10.000 ExcessBC=4.000",
```

EBC = 3*10 - floor(15.792) - 10 = 4

Then when we reach the required pod count and metrics are stable we get EBC=3*10 - floor(19.968) - 10=0:

```
"timestamp": "2023-10-10T15:33:59.24118625Z",
"logger": "autoscaler",
"message": "PodCount=3 Total1PodCapacity=10.000 ObsStableValue=19.602 ObsPanicValue=19.968 TargetBC=10.000 ExcessBC=0.000",
```

Comment on lines +252 to +259
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
Then when we reach the required pod count and metrics are stable we get EBC=3*10 - floor(19.968) - 10=0:
```
"timestamp": "2023-10-10T15:33:59.24118625Z",
"logger": "autoscaler",
"message": "PodCount=3 Total1PodCapacity=10.000 ObsStableValue=19.602 ObsPanicValue=19.968 TargetBC=10.000 ExcessBC=0.000",
```
Then when we reach the required pod count and metrics are stable we get:

"timestamp": "2023-10-10T15:33:59.24118625Z",
"logger": "autoscaler",
"message": "PodCount=3 Total1PodCapacity=10.000 ObsStableValue=19.602 ObsPanicValue=19.968 TargetBC=10.000 ExcessBC=0.000",


EBC=3*10 - floor(19.968) - 10=0

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

the formatting is weird here due to the multiple blocks, but general idea was to move the EBC calc after the logs, to make the structure the same as the other sections

A few seconds later, one minute after we get in panicking mode we get to stable mode (un-panicking):

```
"timestamp": "2023-10-10T15:34:01.240916706Z",
"logger": "autoscaler",
"message": "Un-panicking.",
"knative.dev/key": "default/autoscale-go-00001"
```

The `sks` also transitions to `serve` mode as we have enough capacity until traffic stops and deployment is scaled back to zero (the activator is removed from the path).
For the experiment above since we have stable traffic for almost 10 minutes we don't observe any changes as soon as we have enough pods ready.
Note that when traffic goes down and until we adjust the pod count, for some short period of time, we have more `ebc` than we need.

The major events are also shown in the timeline bellow:

![timeline](/blog/articles/images/timeline.png)

### Conclusion

It is often confusing how and why services are stuck in proxy mode or how users can manage the activator when the latter is on the data path.
This is important, especially when you are just getting started with Knative Serving. With the detailed example above, hopefully, we have demystified this fundamental behavior of the Serving data plane.
Binary file added blog/docs/articles/images/ebc.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added blog/docs/articles/images/panic.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added blog/docs/articles/images/readypods.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added blog/docs/articles/images/timeline.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading