Skip to content

Commit

Permalink
chore: remove superfluous open statements
Browse files Browse the repository at this point in the history
  • Loading branch information
grunweg committed Jul 8, 2024
1 parent 9c93648 commit 9228d9b
Show file tree
Hide file tree
Showing 3 changed files with 5 additions and 16 deletions.
4 changes: 1 addition & 3 deletions SphereEversion/Local/HPrinciple.lean
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ need to access its components only once.

noncomputable section

open scoped unitInterval Classical Filter Topology
open scoped unitInterval Filter Topology

open Filter Set RelLoc

Expand Down Expand Up @@ -94,8 +94,6 @@ structure StepLandscape extends Landscape E where

variable {E}

open scoped Classical

variable (R : RelLoc E F)

namespace StepLandscape
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,12 +12,9 @@ import Mathlib.Topology.VectorBundle.Hom
# Various operations on and properties of smooth vector bundles
-/


noncomputable section

open Bundle Set TopologicalSpace PartialHomeomorph

open scoped Classical Manifold Bundle
open Bundle Set

namespace FiberBundle

Expand Down
12 changes: 3 additions & 9 deletions SphereEversion/ToMathlib/Topology/Misc.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,13 +6,10 @@ import Mathlib.Topology.Algebra.Order.Floor
noncomputable section

open Set Function Filter TopologicalSpace

open scoped unitInterval Topology uniformity Filter Classical
open scoped unitInterval Topology uniformity

section Maps

open Function Set

variable {α β : Type*} [TopologicalSpace α] [TopologicalSpace β] {f : α → β} {g : β → α}

-- TODO: move to Data.Set.Defs
Expand Down Expand Up @@ -205,7 +202,7 @@ section
-- TODO: move to Mathlib.Topology.Constructions
-- needs classical
variable {α β γ δ ι : Type*} [TopologicalSpace α] [TopologicalSpace β] {x : α}

open scoped Classical in
theorem isOpen_slice_of_isOpen_over {Ω : Set (α × β)} {x₀ : α}
(hΩ_op : ∃ U ∈ 𝓝 x₀, IsOpen (Ω ∩ Prod.fst ⁻¹' U)) : IsOpen (Prod.mk x₀ ⁻¹' Ω) := by
rcases hΩ_op with ⟨U, hU, hU_op⟩; convert hU_op.preimage (Continuous.Prod.mk x₀) using 1
Expand Down Expand Up @@ -333,8 +330,6 @@ theorem decode₂_locallyFinite {ι} [Encodable ι] {s : ι → Set α} (hs : Lo
simp_rw [mem_setOf_eq, h, map_none, getD_none, empty_inter] at hn
exact (not_nonempty_empty hn).elim

open TopologicalSpace

variable {X : Type*} [EMetricSpace X] [LocallyCompactSpace X] [SecondCountableTopology X]

theorem exists_locallyFinite_subcover_of_locally {C : Set X} (hC : IsClosed C) {P : Set X → Prop}
Expand Down Expand Up @@ -428,6 +423,7 @@ theorem cover_nat_nhdsWithin {α} [TopologicalSpace α] [SecondCountableTopology
rw [biUnion_range] at hsf
exact ⟨x, hts, hsf⟩

open scoped Classical in
/-- A version of `TopologicalSpace.cover_nat_nhdsWithin` where `f` is only defined on `s`. -/
theorem cover_nat_nhdsWithin' {α} [TopologicalSpace α] [SecondCountableTopology α] {s : Set α}
{f : ∀ x ∈ s, Set α} (hf : ∀ (x) (hx : x ∈ s), f x hx ∈ 𝓝[s] x) (hs : s.Nonempty) :
Expand Down Expand Up @@ -523,8 +519,6 @@ theorem exists_subset_iUnion_interior_of_isOpen (hs : IsOpen s) (uo : ∀ i, IsO

end ShrinkingLemma

open scoped Filter

theorem Filter.EventuallyEq.slice {α β γ : Type*} [TopologicalSpace α] [TopologicalSpace β]
{f g : α × β → γ} {a : α} {b : β} (h : f =ᶠ[𝓝 (a, b)] g) :
(fun y ↦ f (a, y)) =ᶠ[𝓝 b] fun y ↦ g (a, y) :=
Expand Down

0 comments on commit 9228d9b

Please sign in to comment.