Skip to content

Commit

Permalink
Remove now-superfluous open statements; fix one proof in Unused/.
Browse files Browse the repository at this point in the history
  • Loading branch information
grunweg committed Jul 22, 2024
1 parent a0266b4 commit a689675
Show file tree
Hide file tree
Showing 12 changed files with 18 additions and 40 deletions.
3 changes: 0 additions & 3 deletions SphereEversion/InductiveConstructions.lean
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,6 @@ import SphereEversion.Notations
attribute [gcongr] nhdsSet_mono

open Set Filter Function

open scoped Topology unitInterval

/-!
Expand Down Expand Up @@ -252,8 +251,6 @@ section Htpy

private noncomputable def T : ℕ → ℝ := fun n ↦ Nat.rec 0 (fun k x ↦ x + 1 / (2 : ℝ) ^ (k + 1)) n

open scoped BigOperators

-- Note this is more painful than Patrick hoped for. Maybe this should be the definition of T.
private theorem T_eq (n : ℕ) : T n = 1 - (1 / 2 : ℝ) ^ n := by
unfold T
Expand Down
5 changes: 2 additions & 3 deletions SphereEversion/Loops/DeltaMollifier.lean
Original file line number Diff line number Diff line change
Expand Up @@ -29,9 +29,8 @@ convolutions.

noncomputable section

open Set Function MeasureTheory.MeasureSpace ContinuousLinearMap Filter

open scoped Topology BigOperators Filter Convolution
open Set Function MeasureTheory.MeasureSpace ContinuousLinearMap
open scoped Topology Filter Convolution

variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F] [FiniteDimensional ℝ F]
[MeasurableSpace F] [BorelSpace F]
Expand Down
3 changes: 1 addition & 2 deletions SphereEversion/Loops/Reparametrization.lean
Original file line number Diff line number Diff line change
Expand Up @@ -48,8 +48,7 @@ existence of delta mollifiers, partitions of unity, and the inverse function the
noncomputable section

open Set Function MeasureTheory intervalIntegral Filter

open scoped Topology unitInterval Manifold BigOperators
open scoped Topology Manifold

variable {E F : Type*}
[NormedAddCommGroup F] [NormedSpace ℝ F] [FiniteDimensional ℝ F]
Expand Down
9 changes: 2 additions & 7 deletions SphereEversion/Loops/Surrounding.lean
Original file line number Diff line number Diff line change
Expand Up @@ -32,14 +32,9 @@ The key results are:
* `exists_surrounding_loops`
-/


-- to obtain that normed spaces are locally connected
-- to obtain that normed spaces are locally connected
-- to obtain that normed spaces are locally connected
-- to obtain that normed spaces are locally connected
open Set Function FiniteDimensional Int Prod Function Path Filter TopologicalSpace

open scoped Classical Topology unitInterval BigOperators
open Set Function FiniteDimensional Int Prod Path Filter
open scoped Topology unitInterval

namespace IsPathConnected

Expand Down
3 changes: 0 additions & 3 deletions SphereEversion/ToMathlib/Analysis/ContDiff.lean
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,6 @@ import SphereEversion.ToMathlib.Analysis.NormedSpace.OperatorNorm
noncomputable section

open scoped Topology Filter

open Function

section
Expand Down Expand Up @@ -288,8 +287,6 @@ end Arithmetic

section

open scoped BigOperators

variable {𝕜 : Type*} [NontriviallyNormedField 𝕜] {E : Type*} [NormedAddCommGroup E]
[NormedSpace 𝕜 E] {F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F]

Expand Down
5 changes: 1 addition & 4 deletions SphereEversion/ToMathlib/Analysis/Convex/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -2,11 +2,9 @@ import Mathlib.Analysis.Convex.Combination
import Mathlib.Algebra.Module.BigOperators
import Mathlib.Algebra.Order.Hom.Ring

open scoped BigOperators

open Function Set

-- move
-- TODO: move this lemma and the following one
theorem map_finsum {β α γ : Type*} [AddCommMonoid β] [AddCommMonoid γ] {G : Type*}
[FunLike G β γ] [AddMonoidHomClass G β γ] (g : G) {f : α → β} (hf : (Function.support f).Finite) :
g (∑ᶠ i, f i) = ∑ᶠ i, g (f i) :=
Expand All @@ -17,7 +15,6 @@ theorem finprod_eq_prod_of_mulSupport_subset_of_finite {α M} [CommMonoid M] (f
(h : mulSupport f ⊆ s) (hs : s.Finite) : ∏ᶠ i, f i = ∏ i in hs.toFinset, f i := by
apply finprod_eq_prod_of_mulSupport_subset f; rwa [Set.Finite.coe_toFinset]

-- end move
section

variable {𝕜 𝕜' : Type*} {E : Type*} [OrderedSemiring 𝕜] [AddCommMonoid E] [Module 𝕜 E]
Expand Down
2 changes: 1 addition & 1 deletion SphereEversion/ToMathlib/ExistsOfConvex.lean
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ import SphereEversion.ToMathlib.Partition

noncomputable section

open scoped Topology Filter Manifold BigOperators
open scoped Topology Manifold

open Set Function Filter

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ noncomputable section

open Filter Set

open scoped Manifold Topology BigOperators
open scoped Manifold Topology

-- FIXME: move to `Manifold/Algebra/SmoothFunctions`, around line 46
section
Expand Down
3 changes: 1 addition & 2 deletions SphereEversion/ToMathlib/Partition.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,7 @@ import SphereEversion.ToMathlib.Geometry.Manifold.Algebra.SmoothGerm

noncomputable section

open scoped Topology Filter BigOperators

open scoped Topology
open Set Function Filter

variable {ι : Type*}
Expand Down
4 changes: 0 additions & 4 deletions SphereEversion/ToMathlib/Topology/Algebra/Module.lean
Original file line number Diff line number Diff line change
@@ -1,9 +1,5 @@
import Mathlib.Topology.Algebra.Module.Basic

open Filter ContinuousLinearMap Function

open scoped Topology BigOperators Filter

namespace ContinuousLinearMap

variable {R₁ M₁ M₂ M₃ : Type*} [Semiring R₁]
Expand Down
4 changes: 2 additions & 2 deletions SphereEversion/ToMathlib/Topology/Path.lean
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
import Mathlib.Topology.Connected.PathConnected
import Mathlib.Analysis.Normed.Field.Basic

open Set Function Int TopologicalSpace
open Set Function

open scoped BigOperators Topology unitInterval
open scoped Topology unitInterval

noncomputable section

Expand Down
15 changes: 7 additions & 8 deletions SphereEversion/ToMathlib/Unused/IntervalIntegral.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,7 @@ import Mathlib.MeasureTheory.Integral.Periodic

noncomputable section

open TopologicalSpace MeasureTheory Filter FirstCountableTopology Metric Set Function

open scoped Topology Filter NNReal BigOperators Interval
open MeasureTheory Set

section

Expand Down Expand Up @@ -47,7 +45,7 @@ theorem integral_mono_of_le {f g : ℝ → ℝ} {a b : ℝ} {μ : Measure ℝ} (
(hfg : f ≤ᵐ[μ.restrict (Ι a b)] g) : ∫ u in a..b, f u ∂μ ≤ ∫ u in a..b, g u ∂μ := by
rw [uIoc_of_le hab] at hfg
let H := hfg.filter_mono (ae_mono le_rfl)
simpa only [integral_of_le hab] using set_integral_mono_ae_restrict hf.1 hg.1 H
simpa only [integral_of_le hab] using setIntegral_mono_ae_restrict hf.1 hg.1 H

theorem integral_mono_of_le_of_nonneg {f g : ℝ → ℝ} {a b : ℝ} {μ : Measure ℝ} (hab : a ≤ b)
(hf : AEStronglyMeasurable f <| μ.restrict (Ι a b))
Expand All @@ -62,12 +60,13 @@ theorem integral_antimono_of_le {f g : ℝ → ℝ} {a b : ℝ} {μ : Measure
(hfg : f ≤ᵐ[μ.restrict (Ι a b)] g) : ∫ u in a..b, g u ∂μ ≤ ∫ u in a..b, f u ∂μ := by
cases' hab.eq_or_lt with hab hab
· simp [hab]
· rw [uIoc_of_lt hab] at hfg
rw [integral_symm b a]
rw [integral_symm b a]
· rw [uIoc_of_ge hab.le] at hfg
rw [integral_symm b a, integral_symm b a]
apply neg_le_neg
apply integral_mono_of_le hab.le hf.symm hg.symm
rwa [uIoc_swap, uIoc_of_lt hab]
have : Ioc b a = uIoc b a := by rw [uIoc_of_le hab.le]
rw [← this]
exact hfg

theorem integral_antimono_of_le_of_nonneg {f g : ℝ → ℝ} {a b : ℝ} {μ : Measure ℝ} (hab : b ≤ a)
(hf : AEStronglyMeasurable f <| μ.restrict (Ι a b))
Expand Down

0 comments on commit a689675

Please sign in to comment.