1xN Pattern for Pruning Convolutional Neural Networks (paper) .
Pytorch implementation of our paper accepted by TPAMI 2022 -- "1xN Pattern for Pruning Convolutional Neural Networks".
- Python 3.7
- Pytorch >= 1.0.1
- CUDA = 10.0.0
To reproduce our experiments, please use the following command:
python imagenet.py \
--gpus 0 \
--arch mobilenet_v1 (or mobilenet_v2 or mobilenet_v3_large or mobilenet_v3_small) \
--job_dir ./experiment/ \
--data_path [DATA_PATH] \
--pretrained_model [PRETRAIN_MODEL_PATH] \
--pr_target 0.5 \
--N 4 (or 2, 8, 16, 32) \
--conv_type BlockL1Conv \
--train_batch_size 256 \
--eval_batch_size 256 \
--rearrange \
The pre-trained models can be downloaded at MobileNet-V1, MobileNet-V2, MobileNet-V3-Large, MobileNet-V3-Small and ResNet-50.
Table 1: Performance comparison of our 1×N block sparsity against weight pruning and filter pruning (p = 50%).
MobileNet-V1 | Top-1 Acc. | Top-5 Acc. | Model Link |
---|---|---|---|
Weight Pruning | 70.764 | 89.592 | Pruned Model |
Filter Pruning | 65.348 | 86.264 | Pruned Model |
1 x 2 Block | 70.281 | 89.370 | Pruned Model |
1 x 4 Block | 70.052 | 89.056 | Pruned Model |
1 x 8 Block | 69.908 | 89.027 | Pruned Model |
1 x 16 Block | 69.559 | 88.933 | Pruned Model |
1 x 32 Block | 69.541 | 88.801 | Pruned Model |
MobileNet-V2 | Top-1 Acc. | Top-5 Acc. | Model Link |
---|---|---|---|
Weight Pruning | 71.146 | 89.872 | Pruned Model |
Filter Pruning | 66.730 | 87.190 | Pruned Model |
1 x 2 Block | 70.233 | 89.417 | Pruned Model |
1 x 4 Block | 60.706 | 89.165 | Pruned Model |
1 x 8 Block | 69.372 | 88.862 | Pruned Model |
1 x 16 Block | 69.352 | 88.708 | Pruned Model |
1 x 32 Block | 68.762 | 88.425 | Pruned Model |
MobileNet-V3-small | Top-1 Acc. | Top-5 Acc. | Model Link |
---|---|---|---|
Weight Pruning | 66.376 | 86.868 | Pruned Model |
Filter Pruning | 59.054 | 81.713 | Pruned Model |
1 x 2 Block | 65.380 | 86.060 | Pruned Model |
1 x 4 Block | 64.465 | 85.495 | Pruned Model |
1 x 8 Block | 64.101 | 85.274 | Pruned Model |
1 x 16 Block | 63.126 | 84.203 | Pruned Model |
1 x 32 Block | 62.881 | 83.982 | Pruned Model |
MobileNet-V3-large | Top-1 Acc. | Top-5 Acc. | Model Link |
---|---|---|---|
Weight Pruning | 72.897 | 91.093 | Pruned Model |
Filter Pruning | 69.137 | 89.097 | Pruned Model |
1 x 2 Block | 72.120 | 90.677 | Pruned Model |
1 x 4 Block | 71.935 | 90.458 | Pruned Model |
1 x 8 Block | 71.478 | 90.163 | Pruned Model |
1 x 16 Block | 71.112 | 90.129 | Pruned Model |
1 x 32 Block | 70.769 | 89.696 | Pruned Model |
Besides, we provide the raw data for plotting the above figures in ./raw_data_fig4
. For example, run python ./raw_data_fig4/resnet50_top1.py
to plot top-1 accuracy of ResNet-50 pruned by different methods.
More links for pruned models under different pruning rates and their training logs can be found in MobileNet-V2 and ResNet-50.
Table 2: Performance studies of our 1×N pruning with kernel-wise pruning.
ResNet-50 | Top-1 Acc. | Top-5 Acc. | Model Link |
---|---|---|---|
1x4 Block | 76.506 | 93.239 | Pruned Model |
kernel (random) | 74.834 | 92.178 | Pruned Model |
kernel ( |
75.370 | 92.582 | Pruned Model |
To verify the performance of our pruned models, download our pruned models from the links provided above and run the following command:
python imagenet.py \
--gpus 0 \
--arch mobilenet_v1 (or mobilenet_v2 or mobilenet_v3_large or mobilenet_v3_small) \
--data_path [DATA_PATH] \
--conv_type DenseConv \
--evaluate [PRUNED_MODEL_PATH] \
--eval_batch_size 256 \
optional arguments:
-h, --help show this help message and exit
--gpus Select gpu_id to use. default:[0]
--data_path The dictionary where the data is stored.
--job_dir The directory where the summaries will be stored.
--resume Load the model from the specified checkpoint.
--pretrain_model Path of the pre-trained model.
--pruned_model Path of the pruned model to evaluate.
--arch Architecture of model. For ImageNet :mobilenet_v1, mobilenet_v2, mobilenet_v3_small, mobilenet_v3_large
--num_epochs The num of epochs to train. default:180
--train_batch_size Batch size for training. default:256
--eval_batch_size Batch size for validation. default:100
--momentum Momentum for Momentum Optimizer. default:0.9
--lr LR Learning rate. default:1e-2
--lr_decay_step The iterval of learn rate decay for cifar. default:100 150
--lr_decay_freq The frequecy of learn rate decay for Imagenet. default:30
--weight_decay The weight decay of loss. default:4e-5
--lr_type lr scheduler. default: cos. optional:exp/cos/step/fixed
--use_dali If this parameter exists, use dali module to load ImageNet data (benefit in training acceleration).
--conv_type Importance criterion of filters. Default: BlockL1Conv. optional: BlockRandomConv, DenseConv
--pr_target Pruning rate. default:0.5
--full If this parameter exists, prune fully-connected layer.
--N Consecutive N kernels for removal (see paper for details).
--rearrange If this parameter exists, filters will be rearranged (see paper for details).
--export_onnx If this parameter exists, export onnx model.
Table 2: Performance studies of our 1×N block sparsity with and without filter rearrangement (p=50%).
N = 2 | Top-1 Acc. | Top-5 Acc. | Model Link |
---|---|---|---|
w/o Rearange | 69.900 | 89.296 | Pruned Model |
Rearrange | 70.233 | 89.417 | Pruned Model |
N = 4 | Top-1 Acc. | Top-5 Acc. | Model Link |
---|---|---|---|
w/o Rearange | 69.521 | 88.920 | Pruned Model |
Rearrange | 69.579 | 88.944 | Pruned Model |
N = 8 | Top-1 Acc. | Top-5 Acc. | Model Link |
---|---|---|---|
w/o Rearange | 69.206 | 88.608 | Pruned Model |
Rearrange | 69.372 | 88.862 | Pruned Model |
N = 16 | Top-1 Acc. | Top-5 Acc. | Model Link |
---|---|---|---|
w/o Rearange | 68.971 | 88.399 | Pruned Model |
Rearrange | 69.352 | 88.708 | Pruned Model |
N = 32 | Top-1 Acc. | Top-5 Acc. | Model Link |
---|---|---|---|
w/o Rearange | 68.431 | 88.315 | Pruned Model |
Rearrange | 68.762 | 88.425 | Pruned Model |
Our sparse convolution implementation has been released to TVM community.
To verify the performance of our pruned models, convert onnx model and run the following command:
python model_tune.py \
--onnx_path [ONNX_MODEL_PATH] \
--bsr 4 \
--bsc 1 \
--sparsity 0.5
The detail tuning setting is referred to TVM.
Any problem regarding this code re-implementation, please contact the first author: [email protected] or the second author: [email protected].
Any problem regarding the sparse convolution implementation, please contact the third author: [email protected].