Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update README.md #1

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,7 @@ Rijndael算法是基于代换-置换网络(SPN,Substitution-permutation netw

AES标准算法将128位的明文,以特定次序生成一个4x4的矩阵(每个元素是一个字节,8位),即初始状态(state),经由轮函数的迭代转换之后又将作为下一轮迭代的输入继续参与运算直到迭代结束。

Rijndael算法支持大于128位的明文分组,所以需要列数更多的矩阵来描述。Rijndael轮函数的运算是在特殊定义的有限域GF(256)上进行的。有限域(Finite Field)又名伽罗瓦域(Galois field),简单言之就是一个满足特定规则的集合,集合中的元素可以进行加减乘除运算,且运算结果也是属于此集合。更详细有有关Rijndael算法的数学描述,可以参阅本文最后所罗列的参考资料,在此不做熬述
Rijndael算法支持大于128位的明文分组,所以需要列数更多的矩阵来描述。Rijndael轮函数的运算是在特殊定义的有限域GF(256)上进行的。有限域(Finite Field)又名伽罗瓦域(Galois field),简单言之就是一个满足特定规则的集合,集合中的元素可以进行加减乘除运算,且运算结果也是属于此集合。更详细有有关Rijndael算法的数学描述,可以参阅本文最后所罗列的参考资料,在此不做赘述

## 轮函数

Expand Down Expand Up @@ -869,4 +869,4 @@ DPA利用不同数据对应的条件功耗分布的差异进行统计分析以

1. https://github.com/matt-wu/AES/

<最早的手工计算AES-128的想法来源于2016年底读过的一本书《How Software Works: The Magic Behind Encryption ...》,在阅读过程中发现AES一节中的数据全对不上,然后于17年初开始翻阅AES及Rijndael算法标准等资料,等看完所有文档后才发现此书对AES的介绍真是简化得没边了,后来又做了大量的延伸阅读,春节期间根据FIPS 197及《The Design of Rijndael》实现了AES 128/192/256 ECB/CBC的计算过程,之后开始本blog的书写,中间断断续续直至今日才完工,本文估计用时约40小时。学习从来不是容易的事!但越是不容易的事情做起来才更有乐趣!>
<最早的手工计算AES-128的想法来源于2016年底读过的一本书《How Software Works: The Magic Behind Encryption ...》,在阅读过程中发现AES一节中的数据全对不上,然后于17年初开始翻阅AES及Rijndael算法标准等资料,等看完所有文档后才发现此书对AES的介绍真是简化得没边了,后来又做了大量的延伸阅读,春节期间根据FIPS 197及《The Design of Rijndael》实现了AES 128/192/256 ECB/CBC的计算过程,之后开始本blog的书写,中间断断续续直至今日才完工,本文估计用时约40小时。学习从来不是容易的事!但越是不容易的事情做起来才更有乐趣!>