Highly parallelizable Viterbi decoding for CPU or GPU compute. Below are time benchmarks of our method relative to librosa.sequence.viterbi
. We use 1440 states and ~20 million timesteps over ~40k files for benchmarking.
Method | Timesteps decoded per second |
---|---|
Librosa (1x cpu) | 208 |
Librosa (16x cpu) | 1,382* |
Proposed (1x cpu) | 171 |
Proposed (16x cpu) | 2,240 |
Proposed (1x a40 gpu, batch size 1) | 3,944,452 |
Proposed (1x a40 gpu, batch size 512) | 692,160,422 |
*By default, librosa.sequence.viterbi
uses one CPU thread. We use a Multiprocessing pool to parallelize.
git clone [email protected]:maxrmorrison/torbi
pip install torbi/
If you receive an error message regarding mismatched CUDA versions, change the torch version in pyproject.toml
to your currently installed version of torch
.
To perform evaluation of the accuracy and speed of decoding methods, install torbi
with the additional evaluation dependencies.
pip install torbi[evaluate]
import torbi
import torch
# Time-varying categorical distribution to decode
observation = torch.tensor([
[0.25, 0.5, 0.25],
[0.25, 0.25, 0.5],
[0.33, 0.33, 0.33]
]).unsqueeze(dim=0)
# Transition probabilities bewteen categories
transition = torch.tensor([
[0.5, 0.25, 0.25],
[0.33, 0.34, 0.33],
[0.25, 0.25, 0.5]
])
# Initial category probabilities
initial = torch.tensor([0.4, 0.35, 0.25])
# Find optimal path using CPU compute
torbi.from_probabilities(
observation,
transition=transition,
initial=initial,
log_probs=False)
# Find optimal path using GPU compute
torbi.from_probabilities(
observation,
transition=transition,
initial=initial,
log_probs=False,
gpu=0)
def from_probabilities(
observation: torch.Tensor,
batch_frames: Optional[torch.Tensor] = None,
transition: Optional[torch.Tensor] = None,
initial: Optional[torch.Tensor] = None,
log_probs: bool = False,
gpu: Optional[int] = None,
num_threads: Optional[int] = 1
) -> torch.Tensor:
"""Decode a time-varying categorical distribution
Arguments
observation
Time-varying categorical distribution
shape=(batch, frames, states)
batch_frames
Number of frames in each batch item; defaults to all
shape=(batch,)
transition
Categorical transition matrix; defaults to uniform
shape=(states, states)
initial
Categorical initial distribution; defaults to uniform
shape=(states,)
log_probs
Whether inputs are in (natural) log space
gpu
GPU index to use for decoding. Defaults to CPU.
num_threads
The number of threads to use for parallelized decoding
Returns
indices
The decoded bin indices
shape=(batch, frames)
"""
def from_file(
input_file: Union[str, os.PathLike],
transition_file: Optional[Union[str, os.PathLike]] = None,
initial_file: Optional[Union[str, os.PathLike]] = None,
log_probs: bool = False,
gpu: Optional[int] = None,
num_threads: Optional[int] = 1
) -> torch.Tensor:
"""Decode a time-varying categorical distribution file
Arguments
input_file
Time-varying categorical distribution file
shape=(frames, states)
transition_file
Categorical transition matrix file; defaults to uniform
shape=(states, states)
initial_file
Categorical initial distribution file; defaults to uniform
shape=(states,)
log_probs
Whether inputs are in (natural) log space
gpu
GPU index to use for decoding. Defaults to CPU.
num_threads
The number of threads to use for parallelized decoding
Returns
indices
The decoded bin indices
shape=(frames,)
"""
def from_file_to_file(
input_file: Union[str, os.PathLike],
output_file: Union[str, os.PathLike],
transition_file: Optional[Union[str, os.PathLike]] = None,
initial_file: Optional[Union[str, os.PathLike]] = None,
log_probs: bool = False,
gpu: Optional[int] = None,
num_threads: Optional[int] = None
) -> None:
"""Decode a time-varying categorical distribution file and save
Arguments
input_file
Time-varying categorical distribution file
shape=(frames, states)
output_file
File to save decoded indices
transition_file
Categorical transition matrix file; defaults to uniform
shape=(states, states)
initial_file
Categorical initial distribution file; defaults to uniform
shape=(states,)
log_probs
Whether inputs are in (natural) log space
gpu
GPU index to use for decoding. Defaults to CPU.
num_threads
The number of threads to use for parallelized decoding
"""
def from_files_to_files(
input_files: List[Union[str, os.PathLike]],
output_files: List[Union[str, os.PathLike]],
transition_file: Optional[Union[str, os.PathLike]] = None,
initial_file: Optional[Union[str, os.PathLike]] = None,
log_probs: bool = False,
gpu: Optional[int] = None,
num_threads: Optional[int] = None
) -> None:
"""Decode time-varying categorical distribution files and save
Arguments
input_files
Time-varying categorical distribution files
shape=(frames, states)
output_files
Files to save decoded indices
transition_file
Categorical transition matrix file; defaults to uniform
shape=(states, states)
initial_file
Categorical initial distribution file; defaults to uniform
shape=(states,)
log_probs
Whether inputs are in (natural) log space
gpu
GPU index to use for decoding. Defaults to CPU.
num_threads
The number of threads to use for parallelized decoding
"""
usage: python -m torbi
[-h]
--input_files INPUT_FILES [INPUT_FILES ...]
--output_files OUTPUT_FILES [OUTPUT_FILES ...]
[--transition_file TRANSITION_FILE]
[--initial_file INITIAL_FILE]
[--log_probs]
[--gpu GPU]
[--num_threads NUM_THREADS]
arguments:
--input_files INPUT_FILES [INPUT_FILES ...]
Time-varying categorical distribution files
--output_files OUTPUT_FILES [OUTPUT_FILES ...]
Files to save decoded indices
optional arguments:
-h, --help
show this help message and exit
--transition_file TRANSITION_FILE
Categorical transition matrix file; defaults to uniform
--initial_file INITIAL_FILE
Categorical initial distribution file; defaults to uniform
--log_probs
Whether inputs are in (natural) log space
--gpu GPU
GPU index to use for decoding. Defaults to CPU.
--num_threads NUM_THREADS
The number of threads to use for parellelized CPU decoding
python -m torbi.data.download
Downloads and decompresses the daps
and vctk
datasets used for evaluation.
python -m torbi.data.preprocess --gpu 0
Preprocess the dataset to prepare time-varying categorical distributions for
evaluation. The distributions are pitch posteriorgrams produced by the penn
pitch estimator.
python -m torbi.partition
Select all examples in dataset for evaluation.
python -m torbi.evaluate --config <config> --gpu <gpu>
Evaluates the accuracy and speed of decoding methods. <gpu>
is the GPU index.
M. Morrison, C. Churchwell, N. Pruyne, and B. Pardo, "Fine-Grained and Interpretable Neural Speech Editing," Interspeech, September 2024.
@inproceedings{morrison2024fine,
title={Fine-Grained and Interpretable Neural Speech Editing},
author={Morrison, Max and Churchwell, Cameron and Pruyne, Nathan and Pardo, Bryan},
booktitle={Interspeech},
month={September},
year={2024}
}