Skip to content

Commit

Permalink
small improvements
Browse files Browse the repository at this point in the history
  • Loading branch information
brasmus committed Aug 9, 2024
1 parent c024950 commit a3a9422
Show file tree
Hide file tree
Showing 5 changed files with 81 additions and 23 deletions.
4 changes: 2 additions & 2 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Package: esd
Version: 1.10.86
Date: 2024-07-10
Version: 1.10.87
Date: 2024-08-09
Title: Climate analysis and empirical-statistical downscaling (ESD) package for monthly and daily data
Author: Rasmus E. Benestad, Abdelkader Mezghani, Kajsa M. Parding, Helene B. Erlandsen, Ketil Tunheim, and Cristian Lussana
Maintainer: Rasmus E. Benestad <[email protected]>
Expand Down
6 changes: 4 additions & 2 deletions R/diagnose.R
Original file line number Diff line number Diff line change
Expand Up @@ -526,6 +526,7 @@ diagnose.dsensemble.list <- function(x,...,plot=FALSE,is=NULL,ip=NULL,
locations <- loc(X)
if (inherits(X,"pca")) X <- as.station(X,is=is,ip=ip,verbose=verbose)
gcms <- attr(X[[1]],"model_id")
if (length(gcms)==0) gcms <- 1:dim(X[[1]])[2]
if (verbose) print("Compare variance and trends")
outside <- matrix(NA,length(X))
deltagcm <- matrix(NA,length(X),length(gcms))
Expand Down Expand Up @@ -590,8 +591,9 @@ diagnose.dsensemble.list <- function(x,...,plot=FALSE,is=NULL,ip=NULL,
## were mixed up when applying mean(deltagcm) and sd(deltagcm).
#x <- -round(200*(0.5-pnorm(deltaobs,mean=mean(deltagcm),
# sd=sd(deltagcm))),2)
x <- -round(200*(0.5-sapply(seq_along(deltaobs), function(i) pnorm(deltaobs[i],
mean=mean(deltagcm[i,]), sd=sd(deltagcm[i,])))))
x <- -round(200*(0.5-sapply(seq_along(deltaobs),
function(i) pnorm(deltaobs[i],
mean=mean(deltagcm[i,],na.rm=TRUE), sd=sd(deltagcm[i,],na.rm=TRUE)))))
y <- -round(200*(0.5-pbinom(outside,size=N,prob=0.1)),2)
d$x <- x; d$y <- y
points(x,y,pch=21,cex=2*par("cex"),col='black',bg=col)
Expand Down
3 changes: 3 additions & 0 deletions R/map.R
Original file line number Diff line number Diff line change
Expand Up @@ -413,6 +413,9 @@ map.eof <- function(x,...,it=NULL,is=NULL,new=FALSE,projection="lonlat",what="eo
z <- map2sphere(X,it=it,lonR=lonR,latR=-90,axiR=axiR,lab=lab,
xlim=xlim,ylim=ylim,type=type,gridlines=gridlines,
colbar=colbar,new=new,verbose=verbose,...)
} else if (length(grep('moll|aea|utm|stere|robin',projection))>0) {
z <- map.sf(X,projection=projection,xlim=xlim,ylim=ylim,type=type,
gridlines=gridlines,colbar=colbar,...)
}
} else z <- X
}
Expand Down
6 changes: 4 additions & 2 deletions R/plot.R
Original file line number Diff line number Diff line change
Expand Up @@ -403,6 +403,7 @@ plot.station <- function(x,...,plot.type="single",new=TRUE,
}
}
}
if (verbose) print(paste('main:',main))
#if (is.null(main)) main <- attr(x,'longname')[1]
if (is.null(col)) {
if (is.null(dim(x))) {
Expand Down Expand Up @@ -452,9 +453,10 @@ plot.station <- function(x,...,plot.type="single",new=TRUE,
if("seasonalcycle" %in% cls) {
axis(1,at=seq(1,12),labels=month.abb,cex.axis=cex.axis,las=2)
}

if (verbose) print(plot.type)
if (plot.type=="single") {
if (errorbar) {
## REB: added test: 2024-08-06
if ( errorbar & (length(x)==length(err(x))) ) {
segments(index(x),x-err(x),index(x),x+err(x),
lwd=3,col=rgb(0.5,0.5,0.5,0.25))
}
Expand Down
85 changes: 68 additions & 17 deletions demo/illustrate.DS.R
Original file line number Diff line number Diff line change
@@ -1,13 +1,30 @@
## Illustrate downscaling with common EOFs using sample EOFs from the esd-package

warrow <- function(col='grey',border='darkgrey',x=0.5,y=0.1,n=100) {
par(mar=c(1,1,1,1),bty='n',xaxt='n',yaxt='n')
plot(c(0,1.5),c(0,1),type='n',xlab='',ylab='')
s <- 0.05*sin(seq(0,2*pi*3,length=n))
x <- c(0,0.1,seq(0.1,0.9,length=n),0.9,1,
0.9,seq(0.9,0.1,length=n),0.1,0)

y <- c(0.5,1,rep(0.7,n)+s,1,0.5,
0,rep(0.3,n)+s,0,0.5)
polygon(x,y,col=col,border=border)
#rect(0,0,1,1,lty=2)
}

frame <- function(x,ip,col='black') {
data(geoborders)
d <- dim(x)
nx <- d[1]+2*d[3]; ny <- d[2]+2*d[3]
X <- matrix(rep(NA,nx*ny),nx,ny)
X[2*ip + 1:d[1],2*ip + 1:d[2]] <- x[,,ip]
X[2*ip + (1:d[1]) -1, 2*ip + (1:d[2])-1] <- x[,,ip]
#print(c(nx,ny,range(2*ip + (1:d[1]) -1),range(2*ip + (1:d[2])-1)))
image(X,add=TRUE)
rect(2*ip,2*ip,2*ip+d[1],2*ip+d[2],border=col)
xcoords <- approx(1:nx,seq(0,1,length=nx),xout=c(2*ip,2*ip+d[1]-1))$y
ycoords <- approx(1:ny,seq(0,1,length=ny),xout=c(2*ip+1,2*ip+d[2]-1))$y
rect(xcoords[1],ycoords[1],xcoords[2],ycoords[2],border=col)
lines(geoborders,col='grey')
}

## Function that draws a wavy arrow
Expand All @@ -18,35 +35,69 @@ similar <- function(x) {
## Get some sample data for illustration purposes
library(esd)
print('NCEP')
t2m.1 <- annual(subset(t2m.NCEP(),it=c(1991,2020),is=list(lon=c(-180,360),lat=c(-90,90))))
t2m.1 <- annual(subset(t2m.NCEP(),it=c(1961,1990),is=list(lon=c(-180,360),lat=c(-90,90))))
print('NorESM.M')
t2m.2 <- annual(subset(t2m.NorESM.M(),it=c(1991,2020),is=list(lon=c(-180,360),lat=c(-90,90))))
t2m.2 <- annual(subset(t2m.NorESM.M(),it=c(1961,1990),is=list(lon=c(-180,360),lat=c(-90,90))))
print('combine')
t2m <- combine(t2m.1,t2m.2)
print('EOF')
eof.t2m.NCEP <- EOF(t2m,n=5)
x <- attr(eof.t2m.NCEP,'pattern')
eof.t2m <- EOF(t2m,n=3)
x <- t(rbind(coredata(t2m),coredata(attr(t2m,'appendix.1'))))
dim(x) <- c(attr(t2m,'dimensions')[1:2],60)
## Dimensions of the spatial patterns
d <- dim(x)
print(d)
nx <- d[1]; ny <- d[2]; np <- d[3]
col <- c(rep('black',60),rep('grey',60))
nx <- d[1]; ny <- d[2]; nt <- d[3]
col <- c(rep('black',30),rep('grey',30))
par(xaxt='n',yaxt='n',bty='n',xpd=NA)
X <- matrix(rep(NA,nx*ny),nx,ny)

## First figure: Illustrate the EOFs.
print('Fig. A1')
layout(matrix(c(rep(0,5),c(1,1,0,2,2),c(1,1,3,2,2),c(1,1,0,4,4),c(0,0,5,4,4)),5,5,byrow = TRUE))
image(X)
z <- t(as.matrix(t2m))
dim(z) <- attr(t2m,'dimensions')
nt <- dim(z)[3]
for (it in seq(nt,1,by=-1)) frame(z,it,col=col[it])
layout(matrix(c(c(1,1,0,2,2),c(1,1,0,2,2),c(1,1,3,4,4),c(1,1,0,4,4),c(1,1,0,5,0)),5,5,byrow = TRUE))
image(X,xlab='',ylab='',main=paste('Maps: ',d[1],'x',d[2],'x',d[3]))

for (it in seq(nt,1,by=-1)) frame(x,it,col=col[it])

image(X,xlab='',ylab='',main=paste('Modes: ',d[1],'x',d[2],'x 5 + (5 x',d[3],'+ 5)'))
z <- attr(eof.t2m,'pattern')
np <- dim(z)[3]
for (ip in seq(np,1,by=-1)) frame(z,ip)

warrow()

par(mar=c(1,1,1,1),xaxt='s',yaxt='s',bty='n',xpd=NA)
PCs <- zoo(rbind(coredata(eof.t2m),coredata(attr(eof.t2m,"appendix.1"))))
plot(PCs,plot.type='single',xlab='')
rect(1,-0.3,30.5,0.3,col=rgb(1,0.8,0.8),border=rgb(1,0.9,0.9))
rect(30.5,-0.3,60,0.3,col=rgb(0.8,0.8,1),border=rgb(0.9,0.9,1))
for (ip in 1:np) {
lines(PCs[1:30,ip],col='black',lwd=2,lty=ip)
lines(PCs[31:60,ip],col='grey',lwd=2,lty=ip)
}

plot(100*attr(eof.t2m,'eigenvalues')^2/attr(eof.t2m,'tot.var'),
type='b',ylab='Variance (%)',xlab='Mode',ylim=c(0,100),lwd=2)

## Second figure: illustrate the downscaling
print('Fig. A2')
par(xaxt='n',yaxt='n',bty='n',xpd=NA)
layout(matrix(1:4,2,2))
## Get spatial patterns
## Get a time series that represents the predictand (local information)

nino3.4 <- NINO3.4()

par(xaxt='s',yaxt='s',bty='n',xpd=NA)
plot(PCs,plot.type='single',xlab='')
rect(1,-0.3,30.5,0.3,col=rgb(1,0.8,0.8),border=rgb(1,0.9,0.9))
rect(30.5,-0.3,60,0.3,col=rgb(0.8,0.8,1),border=rgb(0.9,0.9,1))
for (ip in 1:np) {
lines(PCs[1:30,ip],col='black',lwd=2,lty=ip)
lines(PCs[31:60,ip],col='grey',lwd=2,lty=ip)
}

plot(nino3.4)

plot(zoo(DS(nino3.4,eof.t2m)))


image(X)
for (ip in seq(np,1,by=-1)) frame(x,ip)

0 comments on commit a3a9422

Please sign in to comment.