An open source project from Data to AI Lab at MIT.
- License: MIT
- Development Status: Pre-Alpha
- Documentation: https://MLBazaar.github.io/AutoBazaar/
- Homepage: https://github.com/MLBazaar/AutoBazaar
- Paper: here
AutoBazaar is an AutoML system created using The Machine Learning Bazaar, a research project and framework for building ML and AutoML systems by the Data To AI Lab at MIT. See below for more references.
It comes in the form of a Python library which can be used directly inside any other Python project, as well as a CLI which allows searching for pipelines to solve a problem directly from the command line.
AutoBazaar has been developed and tested on Python 3.6 and 3.7
Also, although it is not strictly required, the usage of a virtualenv is highly recommended in order to avoid interfering with other software installed in the system where AutoBazaar is run.
The easiest and recommended way to install AutoBazaar is using pip:
pip install autobazaar
This will pull and install the latest stable release from PyPI.
If you want to install from source or contribute to the project please read the Contributing Guide.
AutoBazaar works with datasets in the D3M Schema Format as input.
This dataset schema, developed by MIT Lincoln Labs Laboratory for DARPA's Data-Driven Discovery of Models (D3M) Program, requires the data to be in plainly readable formats such as CSV files or JPG images, and to be set within a folder hierarchy alongside some metadata specifications in JSON format, which include information about all the data contained, as well as the problem that we are trying to solve.
For more details about the schema and about how to format your data to be compliant with it, refer to the Schema Documentation
As an example, you can browse some datasets which have been included in this repository for demonstration purposes:
- 185_baseball: Single Table Regression
- 196_autoMpg: Single Table Classification
Additionally, you can find a collection with ~450 datasets already in the D3M Schema in the ML Bazaar Task Suite (please request access here).
In this short tutorial we will guide you through a series of steps that will help you getting
started with AutoBazaar using its CLI command abz
.
For more details about its usage and the available options, please execute abz --help
on your command line.
Make sure to have your data prepared in the Data Format explained above inside and uncompressed folder in a filesystem directly accessible by AutoBazaar.
In order to check, whether your dataset is available and ready to use, you can execute
the abz list
subcommand.
If your dataset is in a different place than inside a folder called data
within your
current working directory, add the -i
argument to your command indicating
the path to the folder that contains your dataset.
Assuming that the data is inside a folder called input
within your current folder,
you can run:
$ abz list -i path/to/your/datasets/folder
The output should be a table which includes the details of all the datasets found inside the indicated directory:
data_modality task_type task_subtype metric size_human train_samples
dataset
185_baseball single_table classification multi_class f1Macro 148K 1073
196_autoMpg single_table regression univariate meanSquaredError 32K 298
30_personae text classification binary f1 1,4M 116
32_wikiqa multi_table classification binary f1 4,9M 23406
60_jester single_table collaborative_filtering meanAbsoluteError 44M 880719
💡 If you see an error saying that
No matching datasets found
, please review your dataset format and make sure you have indicated the right path.
For the rest of this quickstart, we will be using the 185_baseball
dataset that you can
find inside the input folder
contained in this repository.
Once your data is ready, you can start the AutoBazaar search process using the abz search
command. To do this, you will need to provide again the path to where your datasets are contained, as
well as the name of the datasets that you want to process.
Without further configuration, the search process will evaluate only the default pipeline without performing additional tuning iterations on it.
abz search -i path/to/your/datasets/folder name_of_your_dataset
In order to start a real search process, you will need to provide at least one of the following additional options:
-b, --budget
: Maximum number of tuning iterations to perform.-c, --checkpoints
: Comma separated string containing the different checkpoints, in seconds, where the best pipeline so far must be stored and evaluated against the test dataset. There must be no spaces between the checkpoint times. For example, to store the best pipeline every 10 minutes until 30 minutes have elapsed, you would use the option-c 600,1200,1800
. If checkpoints are provided, the system will terminate at the time of the final checkpoint.-t, --timeout
: Maximum time for the system to run, in seconds. Ignored if checkpoints are given.
For example, to search over the 185_baseball
dataset for a 30 second period, evaluating the
best pipeline so far every 10 seconds, but with a maximum of 10 tuning iterations, we would
use the following command:
abz search 185_baseball -c10,20,30 -b10
For further details about the available options, run abz search --help
.
Once AutoBazaar has finished searching for the best pipeline, a table will be printed to stdout with a summary of the best pipeline found for each dataset. If multiple checkpoints were provided, details about the best pipeline in each checkpoint will also be included.
The output will be a table similar to this one:
pipeline score rank cv_score metric data_modality task_type task_subtype elapsed iterations load_time trivial_time fit_time cv_time error step
dataset
185_baseball fce28425-e45c-4620-9d3c-d329b8684bea 0.316961 0.682957 0.317043 f1Macro single_table classification multi_class 10.024457 0.0 0.011041 0.026212 NaN NaN None None
185_baseball f7428924-79ee-439d-bc32-998a9efea619 0.675132 0.390927 0.609073 f1Macro single_table classification multi_class 21.412262 1.0 0.011041 0.026212 9.99484 NaN None None
185_baseball 397780a5-6bf6-48c9-9a85-06b0d08c5a9d 0.675132 0.357361 0.642639 f1Macro single_table classification multi_class 31.712946 2.0 0.011041 0.026212 9.99484 12.618179 None None
Alternatively, a -r
option can be passed with the name of a CSV file, and the results will
be stored there:
abz search 185_baseball -c10,20,30 -b10 -r results.csv
For more details about AutoBazaar and all its possibilities and features, please check the project documentation site!
If you use AutoBazaar for your research, please consider citing our paper about ML Bazaar:
@inproceedings{smith2020machine,
author = "Smith, Micah J. and Sala, Carles and Kanter, James Max and Veeramachaneni, Kalyan",
title = "The {{Machine Learning Bazaar}}: {{Harnessing}} the {{ML Ecosystem}} for {{Effective System Development}}",
booktitle = "Proceedings of the 2020 {{ACM SIGMOD International Conference}} on {{Management}} of {{Data}}",
year = "2020",
pages = "785--800",
publisher = "{Association for Computing Machinery}",
address = "{Portland, OR, USA}",
doi = "10.1145/3318464.3386146",
isbn = "978-1-4503-6735-6",
language = "en",
series = "{{SIGMOD}} '20"
}