-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
127 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
# Copyright (c) Microsoft Corporation. | ||
# Licensed under the MIT license. | ||
|
||
import ark | ||
import torch | ||
import numpy as np | ||
from model import ModelArgs, ModelArgs7B, Transformer | ||
from transformers import AutoTokenizer, LlamaTokenizer | ||
|
||
|
||
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): | ||
freqs = 1.0 / ( | ||
theta ** (np.arange(0, dim, 2)[: (dim // 2)].astype(np.float32) / dim) | ||
) | ||
t = np.arange(end, dtype=np.float32) | ||
freqs = np.outer(t, freqs).astype(np.float32) | ||
freqs_cis = np.exp(1j * freqs) | ||
return freqs_cis | ||
|
||
|
||
class Generator: | ||
def __init__( | ||
self, | ||
args: ModelArgs, | ||
batch_size: int = 1, | ||
dtype: np.dtype = np.float16, | ||
world_size: int = 1, | ||
): | ||
self.args = args | ||
self.batch_size = batch_size | ||
self.dtype = dtype | ||
|
||
assert self.batch_size <= args.max_batch_size | ||
|
||
# TODO: support multi-GPU | ||
assert world_size == 1 | ||
|
||
self.tokenizer = None | ||
|
||
self.tokens: ark.Tensor = None | ||
self.freqs_cis: ark.Tensor = None | ||
self.mask: ark.Tensor = None | ||
self.logits: ark.Tensor = None | ||
|
||
self.runtime: ark.Runtime = None | ||
|
||
def launch(self, pth_path: str, tok_path: str): | ||
# Load a pretrained tokenizer | ||
self.tokenizer = AutoTokenizer.from_pretrained( | ||
tok_path, use_fast=True, revision="main" | ||
) | ||
|
||
# Initiate ARK | ||
ark.init() | ||
|
||
dtype_ark = ark.DataType.from_numpy(self.dtype) | ||
|
||
# Can make it smaller | ||
seq_len = self.args.max_seq_len | ||
assert seq_len <= self.args.max_seq_len | ||
|
||
# May need to change | ||
start_pos = 0 | ||
|
||
# Pre-calculated freqs_cis | ||
freqs_cis_np = precompute_freqs_cis( | ||
self.args.dim // self.args.n_heads, self.args.max_seq_len * 2 | ||
)[0:seq_len] | ||
freqs_cis_np = freqs_cis_np.astype(np.complex64) | ||
freqs_cis_np = ( | ||
np.stack([freqs_cis_np.real, freqs_cis_np.imag], axis=-1) | ||
.astype(self.dtype) | ||
.reshape(1, seq_len, 1, self.args.dim // self.args.n_heads) | ||
) | ||
self.freqs_cis = ark.tensor(list(freqs_cis_np.shape), dtype_ark) | ||
|
||
# Pre-calculated mask | ||
if seq_len > 1: | ||
mask_np = np.full( | ||
(1, 1, seq_len, seq_len), -np.inf, dtype=self.dtype | ||
) | ||
mask_np = np.triu(mask_np, k=start_pos + 1) | ||
self.mask = ark.tensor(list(mask_np.shape), dtype_ark) | ||
|
||
# User inputs | ||
self.tokens = ark.tensor([self.batch_size, seq_len], dtype_ark) | ||
|
||
# Transformer | ||
ark.set_rank(0) | ||
ark.set_world_size(1) | ||
module = Transformer(self.args, dtype_ark, local_rank=0, world_size=1) | ||
self.logits = module.forward( | ||
self.tokens, start_pos, self.freqs_cis, self.mask | ||
) | ||
|
||
# Make sure we can read state_dict before initiating runtime | ||
param_names = set(module.params_dict().keys()) | ||
state_dict = torch.load(pth_path) | ||
state_dict = { | ||
k: v.float().numpy().astype(self.dtype) | ||
for k, v in state_dict.items() | ||
if k in param_names | ||
} | ||
|
||
# Initiate runtime | ||
self.runtime = ark.Runtime() | ||
self.runtime.launch() | ||
|
||
# Initiate model parameters & precalculated values | ||
module.load_state_dict(state_dict) | ||
self.freqs_cis.from_numpy(freqs_cis_np) | ||
if self.mask: | ||
self.mask.from_numpy(mask_np) | ||
|
||
def run(self, tokens: np.ndarray): | ||
pass | ||
|
||
|
||
if __name__ == "__main__": | ||
pth_path = "/mnt/changhohwang/llama-2-7b/consolidated.00.pth" | ||
tok_path = | ||
|
||
gen = Generator() | ||
gen.launch() | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
torch | ||
transformers |