Skip to content

Latest commit

 

History

History
65 lines (43 loc) · 2.09 KB

README.md

File metadata and controls

65 lines (43 loc) · 2.09 KB

Anonymization for Skeleton Action Recognition

This repository is the official implementation of 'Anonymization for Skeleton Action Recognition' (AAAI2023)

Anonymization framework

Prerequisites

  • Python3
  • Pytorch
  • Run pip install -r requirements.txt for installing other python libraries
  • We use Wandb for experiment tracking

Compile cuda extensions

cd ./model/Temporal_shift
bash run.sh

Data Preparation

  • We use NTU RGB+D skeleton-only datasets (nturgbd_skeletons_s001_to_s017.zip).
  • After downloading datasets, generate the skeleton data with this command.
python data_gen/ntu_gendata.py --data_path <path to nturgbd+d_skeletons>

Training

To train the models in the paper, run this command:

python main.py --config ./config/train_adver_resnet.yaml
python main.py --config ./config/train_adver_unet.yaml

Pre-trained Models

We provide two pre-trained model with NTU60. You can download pretrained models here:

Model Anonymizer network Re-iden. acc. Action acc.
./save_models/pretrained_resnet.pt ResNet 4.20% 91.75%
./save_models/pretrained_unet.pt UNet 5.70% 91.45%

To test the pre-trained models given above, run this command:

python main.py --config ./config/train_adver_resnet.yaml
python main.py --config ./config/train_adver_unet.yaml

Also, we provide more privacy pre-trained models for test privacy model. You can find at /save_models/ntu_pretrained_x.

Acknowledgements

This code is based on Shift-GCN. Also, we use U-Net for anonymizer network. Thanks to the original authors!☺️