Skip to content

Official implementation of 'Anonymization for Skeleton Action Recognition'

License

Notifications You must be signed in to change notification settings

ml-postech/Skeleton-anonymization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Anonymization for Skeleton Action Recognition

This repository is the official implementation of 'Anonymization for Skeleton Action Recognition' (AAAI2023)

Anonymization framework

Prerequisites

  • Python3
  • Pytorch
  • Run pip install -r requirements.txt for installing other python libraries
  • We use Wandb for experiment tracking

Compile cuda extensions

cd ./model/Temporal_shift
bash run.sh

Data Preparation

  • We use NTU RGB+D skeleton-only datasets (nturgbd_skeletons_s001_to_s017.zip).
  • After downloading datasets, generate the skeleton data with this command.
python data_gen/ntu_gendata.py --data_path <path to nturgbd+d_skeletons>

Training

To train the models in the paper, run this command:

python main.py --config ./config/train_adver_resnet.yaml
python main.py --config ./config/train_adver_unet.yaml

Pre-trained Models

We provide two pre-trained model with NTU60. You can download pretrained models here:

Model Anonymizer network Re-iden. acc. Action acc.
./save_models/pretrained_resnet.pt ResNet 4.20% 91.75%
./save_models/pretrained_unet.pt UNet 5.70% 91.45%

To test the pre-trained models given above, run this command:

python main.py --config ./config/train_adver_resnet.yaml
python main.py --config ./config/train_adver_unet.yaml

Also, we provide more privacy pre-trained models for test privacy model. You can find at /save_models/ntu_pretrained_x.

Acknowledgements

This code is based on Shift-GCN. Also, we use U-Net for anonymizer network. Thanks to the original authors!☺️

About

Official implementation of 'Anonymization for Skeleton Action Recognition'

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published