This repository is the official implementation of 'Anonymization for Skeleton Action Recognition' (AAAI2023)
- Python3
- Pytorch
- Run
pip install -r requirements.txt
for installing other python libraries - We use Wandb for experiment tracking
cd ./model/Temporal_shift
bash run.sh
- We use NTU RGB+D skeleton-only datasets (
nturgbd_skeletons_s001_to_s017.zip
). - After downloading datasets, generate the skeleton data with this command.
python data_gen/ntu_gendata.py --data_path <path to nturgbd+d_skeletons>
To train the models in the paper, run this command:
python main.py --config ./config/train_adver_resnet.yaml
python main.py --config ./config/train_adver_unet.yaml
We provide two pre-trained model with NTU60. You can download pretrained models here:
Model | Anonymizer network | Re-iden. acc. | Action acc. |
---|---|---|---|
./save_models/pretrained_resnet.pt | ResNet | 4.20% | 91.75% |
./save_models/pretrained_unet.pt | UNet | 5.70% | 91.45% |
To test the pre-trained models given above, run this command:
python main.py --config ./config/train_adver_resnet.yaml
python main.py --config ./config/train_adver_unet.yaml
Also, we provide more privacy pre-trained models for test privacy model. You can find at /save_models/ntu_pretrained_x
.
This code is based on Shift-GCN. Also, we use U-Net for anonymizer network. Thanks to the original authors!