- OpenCV 2.4.13
- Python 3.4+,
- NumPy 1.10+
- SciPy 0.16+
Download caltech dataset, pick up images and annotations from videos.
$ ./scripts/caltech-dataset-download.sh
$ ./caltech-parser/parse_annotations.py
$ ./caltech-parser/parse_seqs.py
Each .seq
video is separated into .png
images. Each image's filename is consisted of {set**}_{V***}_{frame_num}.png
. According to the official site, set06
~set10
are for test dataset, while the rest are for training dataset.
(Number of objects: 346621)
You can draw bounding boxes in the images and get a video for checking.
$ ./scripts/test_plot_annotations.py
Convert images to VOC2007 format dataset.
$ ./converter/converter.py --anno [annotations.json path] --images [images path] --dst [voc save path] --dataset [dataset type]
- config your properties for VOC2007 annotations and train and test sets in
config.py
. - make voc_path dir empty is better.
Copy other dir from VOC2007 like: local
, results
...
./converter/config.py
is a configure file for different dataset.
./converter/filter.py
can add yourself filter for different interesting objects.