-
Notifications
You must be signed in to change notification settings - Fork 316
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
710 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,209 @@ | ||
# This module contains helper functions to read colmap databases and models | ||
# as well as call colmap functions | ||
|
||
import os | ||
import re | ||
import sys | ||
import tempfile | ||
|
||
import argparse | ||
import collections | ||
import sqlite3 | ||
import numpy as np | ||
import struct | ||
import subprocess | ||
|
||
_MAX_IMAGE_ID = 2 ** 31 - 1 | ||
|
||
# Access colmap sqlite database with cameras, images and matches | ||
class COLMAPDatabase(sqlite3.Connection): | ||
@staticmethod | ||
def connect(database_path): | ||
return sqlite3.connect(database_path, factory=COLMAPDatabase) | ||
|
||
def __init__(self, *args, **kwargs): | ||
super(COLMAPDatabase, self).__init__(*args, **kwargs) | ||
|
||
def __image_ids_to_pair_id(image_id1, image_id2): | ||
if image_id1 > image_id2: | ||
image_id1, image_id2 = image_id2, image_id1 | ||
return image_id1 * _MAX_IMAGE_ID + image_id2 | ||
|
||
|
||
def cameras(self): | ||
cameras = [] | ||
rows = self.execute("SELECT * FROM cameras") | ||
for r in rows: | ||
cameras.append(r) | ||
return cameras | ||
|
||
def images(self): | ||
images = [] | ||
rows = self.execute("SELECT image_id, name FROM images") | ||
for r in rows: | ||
images.append(r) | ||
return images | ||
|
||
def image_id(self, image_name): | ||
images = [] | ||
rows = self.execute("SELECT image_id FROM images WHERE images.name = '%s'" % (image_name)) | ||
if rows == None: | ||
return None | ||
return rows.fetchall()[0][0] | ||
|
||
def num_matches(self, image1, image2): | ||
if image1 == image2: | ||
return 0 | ||
rows = self.execute("SELECT rows FROM matches WHERE pair_id = %d" % (self.__image_ids_to_pair_id(image1, image2))) | ||
return next(rows)[0] | ||
|
||
_FILE_PATH = os.path.dirname(os.path.realpath(__file__)) | ||
|
||
# creates a colmap project ini file based on a template, filling in key arguments (use in a "with:" block) | ||
class ColmapProjectConfig: | ||
def __init__(self, database_path, image_path, output_path, image_list=None, ini_file='mapper.ini', input_path=None): | ||
self.database_path = database_path | ||
self.image_path = image_path | ||
self.output_path = output_path | ||
self.image_list = image_list | ||
self.ini_file = ini_file | ||
self.input_path = input_path | ||
|
||
def file_name(self): | ||
return self.config.name | ||
|
||
def __enter__(self): | ||
self.config = tempfile.NamedTemporaryFile(delete=False) | ||
if self.image_list: | ||
self.image_config = tempfile.NamedTemporaryFile(delete=False) | ||
with open (self.image_config.name, 'w' ) as f: | ||
for image in self.image_list: | ||
f.write(image + '\n') | ||
|
||
with open (os.path.join(_FILE_PATH, self.ini_file), 'r' ) as f: | ||
content = f.read() | ||
content = re.sub('DATABASE_PATH', self.database_path, content) | ||
content = re.sub('IMAGE_PATH', self.image_path, content) | ||
content = re.sub('OUTPUT_PATH', self.output_path, content) | ||
if self.input_path != None: | ||
content = re.sub('INPUT_PATH', self.input_path, content) | ||
image_list_set = 'image_list_path = %s' % (self.image_config.name) if self.image_list else '' | ||
content = re.sub('IMAGE_LIST_SET', image_list_set, content) | ||
with open (self.config.name, 'w' ) as cfg: | ||
cfg.write(content) | ||
|
||
return self | ||
|
||
def __exit__(self, exception_type, exception_value, exception_traceback): | ||
os.remove(self.config.name) | ||
if self.image_list: | ||
os.remove(self.image_config.name) | ||
|
||
CameraModel = collections.namedtuple( | ||
"CameraModel", ["model_id", "model_name", "num_params"] | ||
) | ||
Camera = collections.namedtuple( | ||
"Camera", ["id", "model", "width", "height", "params"] | ||
) | ||
BaseImage = collections.namedtuple( | ||
"Image", ["id", "qvec", "tvec", "camera_id", "name", "xys", "point3D_ids"] | ||
) | ||
Point3D = collections.namedtuple( | ||
"Point3D", ["id", "xyz", "rgb", "error", "image_ids", "point2D_idxs"] | ||
) | ||
|
||
|
||
class Image(BaseImage): | ||
def qvec2rotmat(self): | ||
return qvec2rotmat(self.qvec) | ||
|
||
def _read_next_bytes(fid, num_bytes, format_char_sequence, endian_character="<"): | ||
"""Read and unpack the next bytes from a binary file. | ||
:param fid: | ||
:param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc. | ||
:param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}. | ||
:param endian_character: Any of {@, =, <, >, !} | ||
:return: Tuple of read and unpacked values. | ||
""" | ||
data = fid.read(num_bytes) | ||
return struct.unpack(endian_character + format_char_sequence, data) | ||
|
||
def _skip_next_bytes(fid, num_bytes): | ||
fid.seek(num_bytes, 1) | ||
|
||
# snippets taken from colmap scripts/python/read_write_model.py | ||
# this class reads a colmap model model and exposes fields of interest (mainly just the images) | ||
class Model: | ||
def __init__(self, fname): | ||
self.filename = fname | ||
self.__read_images_binary(os.path.join(fname, 'images.bin')) | ||
self.__analyze_model() | ||
|
||
def __str__(self): | ||
return '%d images, %g mean track length, %g mean reprojection error' % (self.num_images, self.mean_track_length, self.mean_reprojection_error) | ||
|
||
def __read_images_binary(self, path_to_model_file): | ||
""" | ||
see: src/colmap/scene/reconstruction.cc | ||
void Reconstruction::ReadImagesBinary(const std::string& path) | ||
void Reconstruction::WriteImagesBinary(const std::string& path) | ||
""" | ||
images = {} | ||
with open(path_to_model_file, "rb") as fid: | ||
num_reg_images = _read_next_bytes(fid, 8, "Q")[0] | ||
for _ in range(num_reg_images): | ||
binary_image_properties = _read_next_bytes( | ||
fid, num_bytes=64, format_char_sequence="idddddddi" | ||
) | ||
image_id = binary_image_properties[0] | ||
qvec = np.array(binary_image_properties[1:5]) | ||
tvec = np.array(binary_image_properties[5:8]) | ||
camera_id = binary_image_properties[8] | ||
binary_image_name = b"" | ||
current_char = _read_next_bytes(fid, 1, "c")[0] | ||
while current_char != b"\x00": # look for the ASCII 0 entry | ||
binary_image_name += current_char | ||
current_char = _read_next_bytes(fid, 1, "c")[0] | ||
image_name = binary_image_name.decode("utf-8") | ||
num_points2D = _read_next_bytes( | ||
fid, num_bytes=8, format_char_sequence="Q" | ||
)[0] | ||
_skip_next_bytes(fid, num_bytes=24 * num_points2D) # faster to skip, we don't care | ||
xys = None | ||
point3D_ids = None | ||
#x_y_id_s = read_next_bytes( | ||
# fid, | ||
# num_bytes=24 * num_points2D, | ||
# format_char_sequence="ddq" * num_points2D, | ||
#) | ||
#xys = np.column_stack( | ||
# [ | ||
# tuple(map(float, x_y_id_s[0::3])), | ||
# tuple(map(float, x_y_id_s[1::3])), | ||
# ] | ||
#) | ||
#point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3]))) | ||
images[image_id] = Image( | ||
id=image_id, | ||
qvec=qvec, | ||
tvec=tvec, | ||
camera_id=camera_id, | ||
name=image_name, | ||
xys=xys, | ||
point3D_ids=point3D_ids, | ||
) | ||
self.images = images | ||
|
||
def __analyze_model(self): | ||
cmd = subprocess.Popen('colmap model_analyzer --path %s' % (self.filename), shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) | ||
output = cmd.communicate()[1] | ||
if cmd.returncode != 0: | ||
raise Exception('Model %s could not be analyzed.' % (self.filename)) | ||
result = dict() | ||
m = re.search("Registered images: (\d+)", str(output)) | ||
self.num_images = int(m.groups()[0]) | ||
m = re.search("Mean track length: ([-+]?(?:\d*\.*\d+))", str(output)) | ||
self.mean_track_length = float(m.groups()[0]) | ||
m = re.search("Mean reprojection error: (.+)px", str(output)) | ||
self.mean_reprojection_error = float(m.groups()[0]) | ||
|
Oops, something went wrong.