-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
501 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
import tensorflow as tf | ||
import tensorflow.keras.layers as tl | ||
import tensorflow.keras as tk | ||
if __name__=='__main__' and __package__ is None: | ||
import sys | ||
from os import path | ||
sys.path.append(path.normpath(path.join(path.dirname(__file__),'../..'))) | ||
__package__ = 'nthmc.su3_4d' | ||
from . import dataset | ||
from ..lib import action, gauge, transform, nthmc, forcetrain | ||
|
||
# a/r₀, Eq (4.11), S. Necco, Nucl. Phys. B683, 137 (2004) | ||
# ^-+/1.6007 2.3179 0.8020 19.8509*0 1 2 3^~<:0.7796 | ||
# 0.40001 | ||
# ^-+/1.6007 2.3179 0.8020 19.8509*0 1 2 3^~<:0.7383 | ||
# 0.499952 | ||
# ^-+/1.6007 2.3179 0.8020 19.8509*0 1 2 3^~<:0.7099 | ||
# 0.599819 | ||
# ^-+/1.6007 2.3179 0.8020 19.8509*0 1 2 3^~<:0.6716 | ||
# 0.800164 | ||
def run(beta=0.7796, targetBeta=0.7099, nbatch=64, nbatchValidate=1, batch_size=1, nepoch=16, | ||
dense0Unit=8, denseOut=6, | ||
dimChainLen=1, chainLen=1, | ||
lrInit=0.000001, lrSteps=[(1/4, 0.02), (7/8, 0.02), (1, 0.0)]): | ||
nthmc.setup(nthmc.Conf()) | ||
t0 = tf.timestamp() | ||
tf.print('beta:',beta) | ||
tf.print('targetBeta:',targetBeta) | ||
tf.print('nbatch:',nbatch) | ||
tf.print('nbatchValidate:',nbatchValidate) | ||
tf.print('batch_size:',batch_size) | ||
tf.print('nepoch:',nepoch) | ||
tf.print('dense0Unit:',dense0Unit) | ||
tf.print('denseOut:',denseOut) | ||
tf.print('dimChainLen:',dimChainLen) | ||
tf.print('chainLen:',chainLen) | ||
tf.print('lrInit:',lrInit) | ||
tf.print('lrSteps:',lrSteps) | ||
testConf = gauge.readGauge('../../config.dbw2_8t16_b0.7796.m0.lime') | ||
transformedAct = action.TransformedActionVectorFromMatrixBase( | ||
transform=transform.TransformChain( | ||
[transform.StoutSmearSlice( | ||
coeff=transform.CoefficientNets([ | ||
tl.Dense(units=dense0Unit, activation='swish'), | ||
transform.Normalization(), | ||
|
||
tl.Dense(units=denseOut, activation=None)]), | ||
dir=i, is_odd=eo) | ||
for _ in range(chainLen) for i in range(4) for _ in range(dimChainLen) for eo in {False,True}]), | ||
action=action.SU3d4(beta=beta, c1=action.C1DBW2)) | ||
target = action.TransformedActionVectorFromMatrixBase( | ||
transform=transform.Ident(), | ||
action=action.SU3d4(beta=targetBeta, c1=action.C1DBW2)) | ||
transformedAct(testConf) | ||
transformedAct.transform.load_weights('weights') | ||
for t in transformedAct.transform.chain: | ||
# t is StoutSmearSlice here with CoefficientNets | ||
tf.print('coeff dir:',t.dir,'odd' if t.is_odd else 'even') | ||
dt = tf.timestamp()-t0 | ||
tf.print('# initialization time:',dt,'sec') | ||
ti = tf.timestamp() | ||
mappedConf,lndet,iter = transformedAct.transform.inv(testConf) | ||
tf.print('lndet:',lndet) | ||
tf.print('iter:',iter) | ||
tf.print('# inv time:', tf.timestamp()-ti, 'sec') | ||
ti = tf.timestamp() | ||
ft,lndet,cs = transformedAct.gradient(mappedConf) | ||
tf.print('lndet:',lndet) | ||
tf.print('cs:',cs,summarize=-1) | ||
tf.print('# transformedAct.gradient time:', tf.timestamp()-ti, 'sec') | ||
ti = tf.timestamp() | ||
f0,_,_ = target.gradient(mappedConf) | ||
tf.print('# target.gradient time:', tf.timestamp()-ti, 'sec') | ||
ti = tf.timestamp() | ||
loss = forcetrain.LMEl2Loss() | ||
lv,res = loss(ft,f0) | ||
tf.print('loss:', lv) | ||
loss.printCallResults(res) | ||
tf.print('# loss time:', tf.timestamp()-ti, 'sec') | ||
tf.print('# Total time:',tf.timestamp()-t0,'sec') | ||
|
||
if __name__=='__main__': | ||
run() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
import tensorflow as tf | ||
import tensorflow.keras as tk | ||
if __name__=='__main__' and __package__ is None: | ||
import sys | ||
from os import path | ||
sys.path.append(path.normpath(path.join(path.dirname(__file__),'../..'))) | ||
__package__ = 'nthmc.su3_4d' | ||
from . import dataset | ||
from ..lib import action, evolve, fieldio, gauge, transform, nthmc, forcetrain | ||
|
||
# a/r₀, Eq (4.11), S. Necco, Nucl. Phys. B683, 137 (2004) | ||
# ^-+/1.6007 2.3179 0.8020 19.8509*0 1 2 3^~<:0.7796 | ||
# 0.40001 | ||
# ^-+/1.6007 2.3179 0.8020 19.8509*0 1 2 3^~<:0.7383 | ||
# 0.499952 | ||
# ^-+/1.6007 2.3179 0.8020 19.8509*0 1 2 3^~<:0.7099 | ||
# 0.599819 | ||
# ^-+/1.6007 2.3179 0.8020 19.8509*0 1 2 3^~<:0.6716 | ||
# 0.800164 | ||
def run(beta=0.7796, targetBeta=0.7099, nbatch=64, nbatchValidate=1, batch_size=1, nepoch=8, | ||
cPlaqInit=0.001, cChairInit=0.0001, dimChainLen=1, chainLen=1, | ||
lrInit=0.000001, lrSteps=[(1/4, 0.01), (7/8, 0.01), (1, 0.0)], | ||
nTestConf=16, tau=[0.0025,0.005,0.01,0.02]): | ||
conf = nthmc.Conf(nthr=52, nthrIop=2) | ||
nthmc.setup(conf) | ||
tinit = tf.timestamp() | ||
tf.print('beta:',beta) | ||
tf.print('targetBeta:',targetBeta) | ||
tf.print('nbatch:',nbatch) | ||
tf.print('nbatchValidate:',nbatchValidate) | ||
tf.print('batch_size:',batch_size) | ||
tf.print('nepoch:',nepoch) | ||
tf.print('cPlaqInit:',cPlaqInit) | ||
tf.print('cChairInit:',cChairInit) | ||
tf.print('dimChainLen:',dimChainLen) | ||
tf.print('chainLen:',chainLen) | ||
tf.print('lrInit:',lrInit) | ||
tf.print('lrSteps:',lrSteps) | ||
|
||
rng = tf.random.Generator.from_seed(conf.seed) | ||
initgaugeLoader = dataset.ValidateLoader(nbatch=nTestConf, batch_size=1) # use validation set to init | ||
tf.print('initgauge:',initgaugeLoader.set,summarize=-1) | ||
|
||
initgauge = initgaugeLoader(0) | ||
tf.print('plaquette:', gauge.plaq(initgauge), summarize=-1) | ||
|
||
transformedAct = action.TransformedActionVectorFromMatrixBase( | ||
transform=transform.TransformChain( | ||
[transform.StoutSmearSlice(coeff=transform.CoefficientVariable(cPlaqInit, chair=cChairInit), dir=i, is_odd=eo) | ||
for _ in range(chainLen) for i in range(4) for _ in range(dimChainLen) for eo in {False,True}]), | ||
action=action.SU3d4(beta=beta, c1=action.C1DBW2)) | ||
target = action.TransformedActionVectorFromMatrixBase( | ||
transform=transform.Ident(), | ||
action=action.SU3d4(beta=targetBeta, c1=action.C1DBW2)) | ||
|
||
transformedAct(initgauge) | ||
transformedAct.transform.load_weights('weights') | ||
for t in transformedAct.transform.chain: | ||
# t is StoutSmearSlice here with simple coeff | ||
tf.print('coeff dir:',t.dir,'odd' if t.is_odd else 'even',transform.scale_coeff(t.coeff,0.75),summarize=-1) | ||
dt = tf.timestamp()-tinit | ||
tf.print('# initialization time:',dt,'sec') | ||
ti = tf.timestamp() | ||
mappedConf,lndet,iter = transformedAct.transform.inv(initgauge) | ||
tf.print('lndet:',lndet) | ||
tf.print('iter:',iter) | ||
tf.print('# inv time:', tf.timestamp()-ti, 'sec') | ||
tf.print('mapped plaquette:', gauge.plaq(mappedConf), summarize=-1) | ||
ti = tf.timestamp() | ||
ft,lndet,cs = transformedAct.gradient(mappedConf) | ||
tf.print('lndet:',lndet) | ||
tf.print('cs:',cs,summarize=-1) | ||
tf.print('# transformedAct.gradient time:', tf.timestamp()-ti, 'sec') | ||
ti = tf.timestamp() | ||
f0,_,_ = target.gradient(mappedConf) | ||
tf.print('# target.gradient time:', tf.timestamp()-ti, 'sec') | ||
ti = tf.timestamp() | ||
loss = forcetrain.LMEl2Loss() | ||
lv,res = loss(ft,f0) | ||
tf.print('loss:', lv) | ||
loss.printCallResults(res) | ||
tf.print('# loss time:', tf.timestamp()-ti, 'sec') | ||
|
||
tf.print('nTestConf:',nTestConf) | ||
tf.print('tau:',tau) | ||
|
||
mom = action.QuadraticMomentum() | ||
dyn = action.Dynamics(V=transformedAct, T=mom) | ||
|
||
md = evolve.Omelyan2MN(dynamics=dyn, trajLength=tau[0], stepPerTraj=1) | ||
p0 = initgauge.randomTangentVector(rng) | ||
|
||
# @tf.function(jit_compile=True) | ||
@tf.function | ||
def mcmcfun_(x_,p_,r): | ||
x = initgauge.from_tensors(x_) | ||
p = p0.from_tensors(p_) | ||
xn, pn, x1, p1, v0, t0, v1, t1, dH, acc, arand, ls, f2s, fms, bs = mcmc(x,p,r) | ||
return xn.to_tensors(),pn.to_tensors(),x1.to_tensors(),p1.to_tensors(), v0, t0, v1, t1, dH, acc, arand, ls, f2s, fms, bs | ||
def mcmcfun(x,p,r): | ||
x_, p_, x1_, p1_, v0, t0, v1, t1, dH, acc, arand, ls, f2s, fms, bs = mcmcfun_(x.to_tensors(),p.to_tensors(),r) | ||
return x.from_tensors(x_),p.from_tensors(p_),x.from_tensors(x1_),p.from_tensors(p1_), v0, t0, v1, t1, dH, acc, arand, ls, f2s, fms, bs | ||
|
||
mcmc = nthmc.Metropolis(md) | ||
alwaysAccept = tf.constant(0.0, dtype=tf.float64) | ||
|
||
for test_i in range(nTestConf): | ||
tf.print('Test:',test_i) | ||
x = initgaugeLoader(test_i) | ||
tf.print('plaq:', gauge.plaq(x), summarize=-1) | ||
ti = tf.timestamp() | ||
x = transformedAct.transform.inv(x)[0] | ||
tf.print('# inv time:', tf.timestamp()-ti, 'sec') | ||
tf.print('plaqWoTrans:', gauge.plaq(x), summarize=-1) | ||
|
||
for tlen in tau: | ||
tbegin = tf.timestamp() | ||
md.trajLength.assign(tlen) | ||
md.dt.assign(md.trajLength) | ||
tf.print('dt:', tlen) | ||
p = initgauge.randomTangentVector(rng) | ||
if tf.config.list_physical_devices('GPU'): | ||
tf.config.experimental.reset_memory_stats('GPU:0') | ||
xn, pn, x1, p1, v0, t0, v1, t1, dH, acc, arand, ls, f2s, fms, bs = mcmcfun(x, p, alwaysAccept) | ||
tf.print('# mcmc step time:',tf.timestamp()-tbegin,'sec',summarize=-1) | ||
if tf.config.list_physical_devices('GPU'): | ||
mi = tf.config.experimental.get_memory_info('GPU:0') | ||
tf.print('# mem: peak',int(mi['peak']/(1024*1024)),'MiB current',int(mi['current']/(1024*1024)),'MiB') | ||
tf.config.experimental.reset_memory_stats('GPU:0') | ||
nthmc.printMCMCRes(*nthmc.packMCMCRes(mcmc, xn, pn, x, p, x1, p1, v0, t0, v1, t1, dH, acc, arand, ls, f2s, fms, bs)) | ||
newx = tf.stack(transformedAct.transform(xn)[0].to_tensors()) | ||
fieldio.writeLattice(newx.numpy(), f't{tlen}.gauge.test{test_i}.lime') | ||
|
||
tf.print('# Total time:',tf.timestamp()-tinit,'sec') | ||
|
||
if __name__=='__main__': | ||
run() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
import tensorflow as tf | ||
import tensorflow.keras as tk | ||
if __name__=='__main__' and __package__ is None: | ||
import sys | ||
from os import path | ||
sys.path.append(path.normpath(path.join(path.dirname(__file__),'../..'))) | ||
__package__ = 'nthmc.su3_4d' | ||
from . import dataset | ||
from ..lib import action, evolve, fieldio, gauge, transform, nthmc, forcetrain | ||
|
||
# a/r₀, Eq (4.11), S. Necco, Nucl. Phys. B683, 137 (2004) | ||
# ^-+/1.6007 2.3179 0.8020 19.8509*0 1 2 3^~<:0.7796 | ||
# 0.40001 | ||
# ^-+/1.6007 2.3179 0.8020 19.8509*0 1 2 3^~<:0.7383 | ||
# 0.499952 | ||
# ^-+/1.6007 2.3179 0.8020 19.8509*0 1 2 3^~<:0.7099 | ||
# 0.599819 | ||
# ^-+/1.6007 2.3179 0.8020 19.8509*0 1 2 3^~<:0.6716 | ||
# 0.800164 | ||
def run(beta=0.7796, targetBeta=0.7099, nbatch=64, nbatchValidate=1, batch_size=1, nepoch=8, | ||
cPlaqInit=0.001, cChairInit=0.0001, dimChainLen=1, chainLen=1, | ||
lrInit=0.000001, lrSteps=[(1/4, 0.01), (7/8, 0.01), (1, 0.0)], | ||
nTestConf=16, tau=[0.0025,0.005,0.01,0.02]): | ||
conf = nthmc.Conf(nthr=52, nthrIop=2) | ||
nthmc.setup(conf) | ||
tinit = tf.timestamp() | ||
tf.print('beta:',beta) | ||
tf.print('targetBeta:',targetBeta) | ||
tf.print('nbatch:',nbatch) | ||
tf.print('nbatchValidate:',nbatchValidate) | ||
tf.print('batch_size:',batch_size) | ||
tf.print('nepoch:',nepoch) | ||
tf.print('cPlaqInit:',cPlaqInit) | ||
tf.print('cChairInit:',cChairInit) | ||
tf.print('dimChainLen:',dimChainLen) | ||
tf.print('chainLen:',chainLen) | ||
tf.print('lrInit:',lrInit) | ||
tf.print('lrSteps:',lrSteps) | ||
|
||
rng = tf.random.Generator.from_seed(conf.seed) | ||
initgaugeLoader = dataset.ValidateLoader(nbatch=nTestConf, batch_size=1) # use validation set to init | ||
tf.print('initgauge:',initgaugeLoader.set,summarize=-1) | ||
|
||
initgauge = initgaugeLoader(0) | ||
tf.print('plaquette:', gauge.plaq(initgauge), summarize=-1) | ||
|
||
transformedAct = action.TransformedActionVectorFromMatrixBase( | ||
transform=transform.TransformChain( | ||
[transform.StoutSmearSlice(coeff=transform.CoefficientVariable(cPlaqInit, chair=cChairInit, rng=rng), dir=i, is_odd=eo) | ||
for _ in range(chainLen) for i in range(4) for _ in range(dimChainLen) for eo in {False,True}]), | ||
action=action.SU3d4(beta=beta, c1=action.C1DBW2)) | ||
target = action.TransformedActionVectorFromMatrixBase( | ||
transform=transform.Ident(), | ||
action=action.SU3d4(beta=targetBeta, c1=action.C1DBW2)) | ||
|
||
transformedAct(initgauge) | ||
transformedAct.transform.load_weights('weights') | ||
for t in transformedAct.transform.chain: | ||
# t is StoutSmearSlice here with simple coeff | ||
tf.print('coeff dir:',t.dir,'odd' if t.is_odd else 'even',transform.scale_coeff(t.coeff,0.75),summarize=-1) | ||
dt = tf.timestamp()-tinit | ||
tf.print('# initialization time:',dt,'sec') | ||
ti = tf.timestamp() | ||
mappedConf,lndet,iter = transformedAct.transform.inv(initgauge) | ||
tf.print('lndet:',lndet) | ||
tf.print('iter:',iter) | ||
tf.print('# inv time:', tf.timestamp()-ti, 'sec') | ||
tf.print('mapped plaquette:', gauge.plaq(mappedConf), summarize=-1) | ||
ti = tf.timestamp() | ||
ft,lndet,cs = transformedAct.gradient(mappedConf) | ||
tf.print('lndet:',lndet) | ||
tf.print('cs:',cs,summarize=-1) | ||
tf.print('# transformedAct.gradient time:', tf.timestamp()-ti, 'sec') | ||
ti = tf.timestamp() | ||
f0,_,_ = target.gradient(mappedConf) | ||
tf.print('# target.gradient time:', tf.timestamp()-ti, 'sec') | ||
ti = tf.timestamp() | ||
loss = forcetrain.LMEl2Loss() | ||
lv,res = loss(ft,f0) | ||
tf.print('loss:', lv) | ||
loss.printCallResults(res) | ||
tf.print('# loss time:', tf.timestamp()-ti, 'sec') | ||
|
||
tf.print('nTestConf:',nTestConf) | ||
tf.print('tau:',tau) | ||
|
||
mom = action.QuadraticMomentum() | ||
dyn = action.Dynamics(V=transformedAct, T=mom) | ||
|
||
md = evolve.Omelyan2MN(dynamics=dyn, trajLength=tau[0], stepPerTraj=1) | ||
p0 = initgauge.randomTangentVector(rng) | ||
|
||
# @tf.function(jit_compile=True) | ||
@tf.function | ||
def mcmcfun_(x_,p_,r): | ||
x = initgauge.from_tensors(x_) | ||
p = p0.from_tensors(p_) | ||
xn, pn, x1, p1, v0, t0, v1, t1, dH, acc, arand, ls, f2s, fms, bs = mcmc(x,p,r) | ||
return xn.to_tensors(),pn.to_tensors(),x1.to_tensors(),p1.to_tensors(), v0, t0, v1, t1, dH, acc, arand, ls, f2s, fms, bs | ||
def mcmcfun(x,p,r): | ||
x_, p_, x1_, p1_, v0, t0, v1, t1, dH, acc, arand, ls, f2s, fms, bs = mcmcfun_(x.to_tensors(),p.to_tensors(),r) | ||
return x.from_tensors(x_),p.from_tensors(p_),x.from_tensors(x1_),p.from_tensors(p1_), v0, t0, v1, t1, dH, acc, arand, ls, f2s, fms, bs | ||
|
||
mcmc = nthmc.Metropolis(md) | ||
alwaysAccept = tf.constant(0.0, dtype=tf.float64) | ||
|
||
for test_i in range(nTestConf): | ||
tf.print('Test:',test_i) | ||
x = initgaugeLoader(test_i) | ||
tf.print('plaq:', gauge.plaq(x), summarize=-1) | ||
ti = tf.timestamp() | ||
x = transformedAct.transform.inv(x)[0] | ||
tf.print('# inv time:', tf.timestamp()-ti, 'sec') | ||
tf.print('plaqWoTrans:', gauge.plaq(x), summarize=-1) | ||
|
||
for tlen in tau: | ||
tbegin = tf.timestamp() | ||
md.trajLength.assign(tlen) | ||
md.dt.assign(md.trajLength) | ||
tf.print('dt:', tlen) | ||
p = initgauge.randomTangentVector(rng) | ||
if tf.config.list_physical_devices('GPU'): | ||
tf.config.experimental.reset_memory_stats('GPU:0') | ||
xn, pn, x1, p1, v0, t0, v1, t1, dH, acc, arand, ls, f2s, fms, bs = mcmcfun(x, p, alwaysAccept) | ||
tf.print('# mcmc step time:',tf.timestamp()-tbegin,'sec',summarize=-1) | ||
if tf.config.list_physical_devices('GPU'): | ||
mi = tf.config.experimental.get_memory_info('GPU:0') | ||
tf.print('# mem: peak',int(mi['peak']/(1024*1024)),'MiB current',int(mi['current']/(1024*1024)),'MiB') | ||
tf.config.experimental.reset_memory_stats('GPU:0') | ||
nthmc.printMCMCRes(*nthmc.packMCMCRes(mcmc, xn, pn, x, p, x1, p1, v0, t0, v1, t1, dH, acc, arand, ls, f2s, fms, bs)) | ||
newx = tf.stack(transformedAct.transform(xn)[0].to_tensors()) | ||
fieldio.writeLattice(newx.numpy(), f't{tlen}.gauge.test{test_i}.lime') | ||
|
||
tf.print('# Total time:',tf.timestamp()-tinit,'sec') | ||
|
||
if __name__=='__main__': | ||
run() |
Oops, something went wrong.