Dockerfile for NUS-MIT Datathon 2018 server setup @ nscc
docker run \
--runtime nvidia \
-u $UID:$GID \
-v /home:/home \
-e USER \
-e HOME \
-w $HOME \
-p 8888:8888 \
--rm -it \
datathon:cuda9.1-ubuntu16.04 \
/bin/bash -c \
"jupyter lab \
--LabApp.open_browser=False \
--LabApp.ip='0.0.0.0'"
Run Jupyter @ nscc
nvidia-docker-run --net=host kiend/datathon-nscc:cuda9.0-ubuntu16.04 << EOF
export HOME=$HOME
export USER=$USER
cd $HOME
jupyter lab --LabApp.ip='0.0.0.0'
EOF
Default Python (/opt/bin/python
) uses Python 3.6.5.
- tensorflow
- pytorch
- mxnet
- caffe*
- caffe2*
- theano
- keras (keras-mxnet)
- xgboost
- pymc3
- Packages in the Python data science stack: numpy, scipy, pandas, sklearn, matplotlib, ... Run
pip list
for the full list.
To install other packages: pip install --user <package_name>
* To use caffe or caffe2 in Python, first run import caffe_path
or import caffe2_path
, i.e.
import caffe_path
import caffe
or
import caffe2_path
import caffe2
caffe CLI (caffe.bin
) is available by default without any extra configuration.
version 3.5.0
- tidyverse
- dplyr
- tidyr
- ggplot2
- ...
- data.table
- xgboost
- caret
- rjags
- tensorflow**
- keras**
- ... Run
installed.packages()
inside R for the full list.
To install other packages: install.packages("<packages_name>")
** tensorflow and keras for R have already been properly configured. There is no need to run install_keras()
or install_tensorflow()
.