-
Notifications
You must be signed in to change notification settings - Fork 755
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
4 changed files
with
350 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
import argparse | ||
import math | ||
import os.path as osp | ||
|
||
import mmcv | ||
|
||
from mmocr.utils import convert_annotations | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser( | ||
description='Generate training and validation set of ArT ') | ||
parser.add_argument('root_path', help='Root dir path of ArT') | ||
parser.add_argument( | ||
'--val-ratio', help='Split ratio for val set', default=0.0, type=float) | ||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
def collect_art_info(root_path, split, ratio, print_every=1000): | ||
"""Collect the annotation information. | ||
The annotation format is as the following: | ||
{ | ||
'gt_1726': # 'gt_1726' is file name | ||
[ | ||
{ | ||
'transcription': '燎申集团', | ||
'points': [ | ||
[141, 199], | ||
[237, 201], | ||
[313, 236], | ||
[357, 283], | ||
[359, 300], | ||
[309, 261], | ||
[233, 230], | ||
[140, 231] | ||
], | ||
'language': 'Chinese', | ||
'illegibility': False | ||
}, | ||
... | ||
], | ||
... | ||
} | ||
Args: | ||
root_path (str): Root path to the dataset | ||
split (str): Dataset split, which should be 'train' or 'val' | ||
ratio (float): Split ratio for val set | ||
print_every (int): Print log info per iteration | ||
Returns: | ||
img_info (dict): The dict of the img and annotation information | ||
""" | ||
|
||
annotation_path = osp.join(root_path, 'annotations/train_labels.json') | ||
if not osp.exists(annotation_path): | ||
raise Exception( | ||
f'{annotation_path} not exists, please check and try again.') | ||
|
||
annotation = mmcv.load(annotation_path) | ||
img_prefixes = annotation.keys() | ||
|
||
trn_files, val_files = [], [] | ||
if ratio > 0: | ||
for i, file in enumerate(img_prefixes): | ||
if i % math.floor(1 / ratio): | ||
trn_files.append(file) | ||
else: | ||
val_files.append(file) | ||
else: | ||
trn_files, val_files = img_prefixes, [] | ||
print(f'training #{len(trn_files)}, val #{len(val_files)}') | ||
|
||
if split == 'train': | ||
img_prefixes = trn_files | ||
elif split == 'val': | ||
img_prefixes = val_files | ||
else: | ||
raise NotImplementedError | ||
|
||
img_infos = [] | ||
for i, prefix in enumerate(img_prefixes): | ||
if i > 0 and i % print_every == 0: | ||
print(f'{i}/{len(img_prefixes)}') | ||
img_file = osp.join(root_path, 'imgs', prefix + '.jpg') | ||
# Skip not exist images | ||
if not osp.exists(img_file): | ||
continue | ||
img = mmcv.imread(img_file) | ||
|
||
img_info = dict( | ||
file_name=osp.join(osp.basename(img_file)), | ||
height=img.shape[0], | ||
width=img.shape[1], | ||
segm_file=osp.join(osp.basename(annotation_path))) | ||
|
||
anno_info = [] | ||
for ann in annotation[prefix]: | ||
segmentation = [] | ||
for x, y in ann['points']: | ||
segmentation.append(max(0, x)) | ||
segmentation.append(max(0, y)) | ||
xs, ys = segmentation[::2], segmentation[1::2] | ||
x, y = min(xs), min(ys) | ||
w, h = max(xs) - x, max(ys) - y | ||
bbox = [x, y, w, h] | ||
if ann['transcription'] == '###' or ann['illegibility']: | ||
iscrowd = 1 | ||
else: | ||
iscrowd = 0 | ||
anno = dict( | ||
iscrowd=iscrowd, | ||
category_id=1, | ||
bbox=bbox, | ||
area=w * h, | ||
segmentation=[segmentation]) | ||
anno_info.append(anno) | ||
img_info.update(anno_info=anno_info) | ||
img_infos.append(img_info) | ||
|
||
return img_infos | ||
|
||
|
||
def main(): | ||
args = parse_args() | ||
root_path = args.root_path | ||
print('Processing training set...') | ||
training_infos = collect_art_info(root_path, 'train', args.val_ratio) | ||
convert_annotations(training_infos, | ||
osp.join(root_path, 'instances_training.json')) | ||
if args.val_ratio > 0: | ||
print('Processing validation set...') | ||
val_infos = collect_art_info(root_path, 'val', args.val_ratio) | ||
convert_annotations(val_infos, osp.join(root_path, | ||
'instances_val.json')) | ||
print('Finish') | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
import argparse | ||
import json | ||
import math | ||
import os.path as osp | ||
|
||
import mmcv | ||
|
||
from mmocr.utils.fileio import list_to_file | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser( | ||
description='Generate training and validation set of ArT ') | ||
parser.add_argument('root_path', help='Root dir path of ArT') | ||
parser.add_argument( | ||
'--val-ratio', help='Split ratio for val set', default=0.0, type=float) | ||
parser.add_argument( | ||
'--nproc', default=1, type=int, help='Number of processes') | ||
parser.add_argument( | ||
'--format', | ||
default='jsonl', | ||
help='Use jsonl or string to format annotations', | ||
choices=['jsonl', 'txt']) | ||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
def convert_art(root_path, split, ratio, format): | ||
"""Collect the annotation information and crop the images. | ||
The annotation format is as the following: | ||
{ | ||
"gt_2836_0": [ | ||
{ | ||
"transcription": "URDER", | ||
"points": [ | ||
[25, 51], | ||
[0, 2], | ||
[21, 0], | ||
[42, 43] | ||
], | ||
"language": "Latin", | ||
"illegibility": false | ||
} | ||
], ... | ||
} | ||
Args: | ||
root_path (str): The root path of the dataset | ||
split (str): The split of dataset. Namely: training or val | ||
ratio (float): Split ratio for val set | ||
format (str): Annotation format, whether be txt or jsonl | ||
Returns: | ||
img_info (dict): The dict of the img and annotation information | ||
""" | ||
|
||
annotation_path = osp.join(root_path, | ||
'annotations/train_task2_labels.json') | ||
if not osp.exists(annotation_path): | ||
raise Exception( | ||
f'{annotation_path} not exists, please check and try again.') | ||
|
||
annotation = mmcv.load(annotation_path) | ||
# outputs | ||
dst_label_file = osp.join(root_path, f'{split}_label.{format}') | ||
|
||
img_prefixes = annotation.keys() | ||
|
||
trn_files, val_files = [], [] | ||
if ratio > 0: | ||
for i, file in enumerate(img_prefixes): | ||
if i % math.floor(1 / ratio): | ||
trn_files.append(file) | ||
else: | ||
val_files.append(file) | ||
else: | ||
trn_files, val_files = img_prefixes, [] | ||
print(f'training #{len(trn_files)}, val #{len(val_files)}') | ||
|
||
if split == 'train': | ||
img_prefixes = trn_files | ||
elif split == 'val': | ||
img_prefixes = val_files | ||
else: | ||
raise NotImplementedError | ||
|
||
labels = [] | ||
for prefix in img_prefixes: | ||
text_label = annotation[prefix][0]['transcription'] | ||
dst_img_name = prefix + '.jpg' | ||
|
||
if format == 'txt': | ||
labels.append(f'crops/{dst_img_name}' f' {text_label}') | ||
elif format == 'jsonl': | ||
labels.append( | ||
json.dumps( | ||
{ | ||
'filename': f'crops/{dst_img_name}', | ||
'text': text_label | ||
}, | ||
ensure_ascii=False)) | ||
|
||
list_to_file(dst_label_file, labels) | ||
|
||
|
||
def main(): | ||
args = parse_args() | ||
root_path = args.root_path | ||
print('Processing training set...') | ||
convert_art( | ||
root_path=root_path, | ||
split='train', | ||
ratio=args.val_ratio, | ||
format=args.format) | ||
if args.val_ratio > 0: | ||
print('Processing validation set...') | ||
convert_art( | ||
root_path=root_path, | ||
split='val', | ||
ratio=args.val_ratio, | ||
format=args.format) | ||
print('Finish') | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |