Skip to content

convert between pytorch, caffe prototxt/weights and darkness cfg/weights

Notifications You must be signed in to change notification settings

oxyai/pytorch-caffe-darknet-convert

 
 

Repository files navigation

pytorch-caffe-darknet-convert

Convert between pytorch, caffe and darknet models. Caffe darknet models can be load directly by pytorch.

Convert pytorch to darknet

convert resnet50 from pytorch to darknet

1. python pytorch2darknet.py 
2. python main.py -a resnet50-darknet --pretrained -e /home/xiaohang/ImageNet/
=> using pre-trained model 'resnet50'
load weights from resnet50.weights
Test: [0/196]   Time 16.132 (16.132)    Loss 6.1005 (6.1005)    Prec@1 87.109 (87.109)  Prec@5 97.266 (97.266)
Test: [10/196]  Time 0.387 (1.803)      Loss 6.2117 (6.1357)    Prec@1 77.734 (82.670)  Prec@5 91.797 (95.455)
Test: [20/196]  Time 0.275 (1.261)      Loss 6.1050 (6.1402)    Prec@1 84.375 (82.236)  Prec@5 92.969 (95.424)
Test: [30/196]  Time 0.162 (1.123)      Loss 6.1675 (6.1257)    Prec@1 80.469 (83.543)  Prec@5 95.312 (95.817)
Test: [40/196]  Time 0.889 (1.024)      Loss 6.1888 (6.1483)    Prec@1 81.250 (82.012)  Prec@5 96.875 (95.770)
Test: [50/196]  Time 0.164 (0.970)      Loss 6.0900 (6.1520)    Prec@1 88.281 (81.794)  Prec@5 97.656 (95.956)
Test: [60/196]  Time 0.380 (0.933)      Loss 6.1949 (6.1566)    Prec@1 76.172 (81.416)  Prec@5 93.359 (95.946)
Test: [70/196]  Time 0.427 (0.916)      Loss 6.2009 (6.1525)    Prec@1 78.516 (81.679)  Prec@5 96.484 (96.099)
Test: [80/196]  Time 0.910 (0.900)      Loss 6.3763 (6.1584)    Prec@1 60.938 (81.134)  Prec@5 88.672 (95.751)
Test: [90/196]  Time 1.035 (0.896)      Loss 6.4143 (6.1703)    Prec@1 55.078 (80.039)  Prec@5 86.328 (95.175)
Test: [100/196] Time 0.162 (0.871)      Loss 6.3073 (6.1831)    Prec@1 68.359 (78.968)  Prec@5 91.406 (94.609)
Test: [110/196] Time 0.658 (0.867)      Loss 6.1750 (6.1885)    Prec@1 76.953 (78.442)  Prec@5 94.922 (94.327)
Test: [120/196] Time 0.165 (0.861)      Loss 6.2904 (6.1919)    Prec@1 71.094 (78.141)  Prec@5 88.281 (94.034)
Test: [130/196] Time 1.751 (0.858)      Loss 6.1702 (6.2008)    Prec@1 81.250 (77.290)  Prec@5 94.141 (93.702)
Test: [140/196] Time 0.163 (0.849)      Loss 6.2442 (6.2045)    Prec@1 75.000 (76.948)  Prec@5 90.625 (93.448)
Test: [150/196] Time 2.031 (0.846)      Loss 6.1890 (6.2082)    Prec@1 76.953 (76.604)  Prec@5 91.016 (93.189)
Test: [160/196] Time 0.161 (0.837)      Loss 6.1399 (6.2109)    Prec@1 86.719 (76.366)  Prec@5 94.531 (92.998)
Test: [170/196] Time 1.687 (0.835)      Loss 6.1388 (6.2159)    Prec@1 82.812 (75.959)  Prec@5 97.656 (92.848)
Test: [180/196] Time 1.185 (0.828)      Loss 6.3454 (6.2198)    Prec@1 68.750 (75.650)  Prec@5 91.797 (92.705)
Test: [190/196] Time 1.367 (0.826)      Loss 6.3394 (6.2196)    Prec@1 67.188 (75.685)  Prec@5 95.703 (92.752)
 * Prec@1 75.794 Prec@5 92.798

imagenet data is processed as described here

Convert darknet to caffe

convert tiny-yolo from darknet to caffe

1. download tiny-yolo-voc.weights : https://pjreddie.com/media/files/tiny-yolo-voc.weights
https://github.com/pjreddie/darknet/blob/master/cfg/tiny-yolo-voc.cfg
2. python darknet2caffe.py tiny-yolo-voc.cfg tiny-yolo-voc.weights tiny-yolo-voc.prototxt tiny-yolo-voc.caffemodel
3. download voc data and process according to https://github.com/marvis/pytorch-yolo2
python valid.py cfg/voc.data tiny-yolo-voc.prototxt tiny-yolo-voc.caffemodel
4. python scripts/voc_eval.py results/comp4_det_test_
VOC07 metric? Yes
AP for aeroplane = 0.6094
AP for bicycle = 0.6781
AP for bird = 0.4573
AP for boat = 0.3786
AP for bottle = 0.2081
AP for bus = 0.6645
AP for car = 0.6587
AP for cat = 0.6720
AP for chair = 0.3245
AP for cow = 0.4902
AP for diningtable = 0.5549
AP for dog = 0.5905
AP for horse = 0.6871
AP for motorbike = 0.6695
AP for person = 0.5833
AP for pottedplant = 0.2535
AP for sheep = 0.5374
AP for sofa = 0.4878
AP for train = 0.7004
AP for tvmonitor = 0.5754
Mean AP = 0.5391
5. python detect.py tiny-yolo-voc.prototxt tiny-yolo-voc.caffemodel data/dog.jpg 

convert tiny-yolo from darknet to caffe without bn

1. python darknet.py tiny-yolo-voc.cfg tiny-yolo-voc.weights tiny-yolo-voc-nobn.cfg tiny-yolo-voc-nobn.weights
2. python darknet2caffe.py tiny-yolo-voc-nobn.cfg tiny-yolo-voc-nobn.weights tiny-yolo-voc-nobn.prototxt tiny-yolo-voc-nobn.caffemodel
3. python valid.py cfg/voc.data tiny-yolo-voc-nobn.prototxt tiny-yolo-voc-nobn.caffemodel
4. python scripts/voc_eval.py results/comp4_det_test_
VOC07 metric? Yes
AP for aeroplane = 0.6094
AP for bicycle = 0.6781
AP for bird = 0.4573
AP for boat = 0.3786
AP for bottle = 0.2081
AP for bus = 0.6645
AP for car = 0.6587
AP for cat = 0.6720
AP for chair = 0.3245
AP for cow = 0.4902
AP for diningtable = 0.5549
AP for dog = 0.5905
AP for horse = 0.6871
AP for motorbike = 0.6695
AP for person = 0.5833
AP for pottedplant = 0.2535
AP for sheep = 0.5374
AP for sofa = 0.4878
AP for train = 0.7004
AP for tvmonitor = 0.5754
Mean AP = 0.5391
5. python detect.py tiny-yolo-voc-nobn.prototxt tiny-yolo-voc-nobn.caffemodel data/dog.jpg 

Convert caffe to darknet

convert kaiming's resnet50 from caffe to darknet

1. download resnet50 from https://github.com/KaimingHe/deep-residual-networks
ResNet-50-deploy.prototxt: https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-50-deploy.prototxt
ResNet-50-model.caffemodel and ResNet_mean.binaryproto : https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&id=4006CBB8476FF777%2117887&cid=4006CBB8476FF777
python main.py -a resnet50-kaiming --pretrained -e /home/xiaohang/ImageNet/
=> using pre-trained model 'resnet50-kaiming'
load weights from ResNet-50-model.caffemodel
Loading caffemodel:  ResNet-50-model.caffemodel
convlution conv1 has bias
Test: [0/196]   Time 15.196 (15.196)    Loss 0.5485 (0.5485)    Prec@1 87.500 (87.500)  Prec@5 96.875 (96.875)
Test: [10/196]  Time 0.603 (1.851)      Loss 1.0412 (0.7676)    Prec@1 73.828 (80.717)  Prec@5 92.578 (94.567)
Test: [20/196]  Time 0.359 (1.361)      Loss 0.7243 (0.7656)    Prec@1 85.547 (80.804)  Prec@5 92.969 (94.494)
Test: [30/196]  Time 0.883 (1.240)      Loss 0.8022 (0.7273)    Prec@1 82.031 (81.981)  Prec@5 95.703 (94.796)
Test: [40/196]  Time 1.166 (1.159)      Loss 0.8016 (0.7690)    Prec@1 79.297 (80.516)  Prec@5 94.922 (94.779)
Test: [50/196]  Time 1.490 (1.108)      Loss 0.4365 (0.7552)    Prec@1 89.062 (80.668)  Prec@5 98.047 (95.044)
Test: [60/196]  Time 0.295 (1.072)      Loss 1.0453 (0.7689)    Prec@1 72.656 (80.277)  Prec@5 93.750 (95.210)
Test: [70/196]  Time 0.728 (1.064)      Loss 0.7959 (0.7542)    Prec@1 77.344 (80.573)  Prec@5 94.922 (95.384)
Test: [80/196]  Time 1.314 (1.047)      Loss 1.5740 (0.7775)    Prec@1 62.109 (80.179)  Prec@5 85.938 (95.100)
Test: [90/196]  Time 1.702 (1.040)      Loss 2.2488 (0.8350)    Prec@1 51.953 (78.979)  Prec@5 82.422 (94.463)
Test: [100/196] Time 0.300 (1.016)      Loss 1.2809 (0.8886)    Prec@1 69.141 (77.827)  Prec@5 89.844 (93.862)
Test: [110/196] Time 1.121 (1.011)      Loss 0.9445 (0.9139)    Prec@1 75.000 (77.404)  Prec@5 92.188 (93.567)
Test: [120/196] Time 0.667 (1.007)      Loss 1.4142 (0.9327)    Prec@1 66.406 (77.079)  Prec@5 86.328 (93.337)
Test: [130/196] Time 0.915 (0.995)      Loss 0.6773 (0.9680)    Prec@1 81.641 (76.273)  Prec@5 95.312 (92.981)
Test: [140/196] Time 0.315 (0.989)      Loss 1.1367 (0.9884)    Prec@1 74.219 (75.923)  Prec@5 91.016 (92.758)
Test: [150/196] Time 0.840 (0.979)      Loss 1.2445 (1.0101)    Prec@1 76.953 (75.492)  Prec@5 88.672 (92.454)
Test: [160/196] Time 0.324 (0.978)      Loss 0.9249 (1.0276)    Prec@1 80.078 (75.182)  Prec@5 90.234 (92.185)
Test: [170/196] Time 0.534 (0.967)      Loss 0.6927 (1.0442)    Prec@1 80.859 (74.737)  Prec@5 96.875 (91.954)
Test: [180/196] Time 0.298 (0.965)      Loss 1.3764 (1.0596)    Prec@1 66.406 (74.350)  Prec@5 91.797 (91.786)
Test: [190/196] Time 0.414 (0.962)      Loss 1.1433 (1.0589)    Prec@1 71.094 (74.317)  Prec@5 94.531 (91.823)
 * Prec@1 74.448 Prec@5 91.884
Kaiming: ResNet-50 24.7% 7.8% (shorter side=256)
2. python caffe2darknet.py ResNet-50-deploy.prototxt ResNet-50-model.caffemodel ResNet-50-model.cfg ResNet-50-model.weights
3. python main.py -a resnet50-kaiming-dk --pretrained -e /home/xiaohang/ImageNet/        
=> using pre-trained model 'resnet50-kaiming-dk'
load weights from ResNet-50-model.weights
Test: [0/196]   Time 14.963 (14.963)    Loss 0.5485 (0.5485)    Prec@1 87.500 (87.500)  Prec@5 96.875 (96.875)
Test: [10/196]  Time 0.939 (1.876)      Loss 1.0412 (0.7676)    Prec@1 73.828 (80.717)  Prec@5 92.578 (94.567)
Test: [20/196]  Time 0.331 (1.392)      Loss 0.7243 (0.7656)    Prec@1 85.547 (80.804)  Prec@5 92.969 (94.494)
Test: [30/196]  Time 1.910 (1.267)      Loss 0.8022 (0.7273)    Prec@1 82.031 (81.981)  Prec@5 95.703 (94.796)
Test: [40/196]  Time 0.352 (1.154)      Loss 0.8016 (0.7690)    Prec@1 79.297 (80.516)  Prec@5 94.922 (94.779)
Test: [50/196]  Time 1.606 (1.111)      Loss 0.4365 (0.7552)    Prec@1 89.062 (80.668)  Prec@5 98.047 (95.044)
Test: [60/196]  Time 0.714 (1.077)      Loss 1.0453 (0.7689)    Prec@1 72.656 (80.277)  Prec@5 93.750 (95.210)
Test: [70/196]  Time 0.332 (1.055)      Loss 0.7959 (0.7542)    Prec@1 77.344 (80.573)  Prec@5 94.922 (95.384)
Test: [80/196]  Time 1.654 (1.054)      Loss 1.5740 (0.7775)    Prec@1 62.109 (80.179)  Prec@5 85.938 (95.100)
Test: [90/196]  Time 0.344 (1.030)      Loss 2.2488 (0.8350)    Prec@1 51.953 (78.979)  Prec@5 82.422 (94.463)
Test: [100/196] Time 1.332 (1.016)      Loss 1.2809 (0.8886)    Prec@1 69.141 (77.827)  Prec@5 89.844 (93.862)
Test: [110/196] Time 0.336 (1.005)      Loss 0.9445 (0.9139)    Prec@1 75.000 (77.404)  Prec@5 92.188 (93.567)
Test: [120/196] Time 1.411 (1.000)      Loss 1.4142 (0.9327)    Prec@1 66.406 (77.079)  Prec@5 86.328 (93.337)
Test: [130/196] Time 1.784 (0.997)      Loss 0.6773 (0.9680)    Prec@1 81.641 (76.273)  Prec@5 95.312 (92.981)
Test: [140/196] Time 0.374 (0.986)      Loss 1.1367 (0.9884)    Prec@1 74.219 (75.923)  Prec@5 91.016 (92.758)
Test: [150/196] Time 1.725 (0.983)      Loss 1.2445 (1.0101)    Prec@1 76.953 (75.492)  Prec@5 88.672 (92.454)
Test: [160/196] Time 0.345 (0.974)      Loss 0.9249 (1.0276)    Prec@1 80.078 (75.182)  Prec@5 90.234 (92.185)
Test: [170/196] Time 1.802 (0.972)      Loss 0.6927 (1.0442)    Prec@1 80.859 (74.737)  Prec@5 96.875 (91.954)
Test: [180/196] Time 1.748 (0.967)      Loss 1.3764 (1.0596)    Prec@1 66.406 (74.350)  Prec@5 91.797 (91.786)
Test: [190/196] Time 1.099 (0.960)      Loss 1.1433 (1.0589)    Prec@1 71.094 (74.317)  Prec@5 94.531 (91.823)
 * Prec@1 74.448 Prec@5 91.884

convert resnet18 from caffe to darknet

1. Download resnet18 from https://github.com/HolmesShuan/ResNet-18-Caffemodel-on-ImageNet.git and save as resnet-18.caffemodel
python main.py -a resnet18-caffe --pretrained -e /home/xiaohang/ImageNet/       
=> using pre-trained model 'resnet18-caffe'

load weights from resnet-18.caffemodel
Loading caffemodel:  resnet-18.caffemodel
Test: [0/196]   Time 14.473 (14.473)    Loss 0.6839 (0.6839)    Prec@1 83.594 (83.594)  Prec@5 95.703 (95.703)
Test: [10/196]  Time 0.313 (1.738)      Loss 1.3643 (1.0104)    Prec@1 62.500 (74.183)  Prec@5 89.844 (91.868)
Test: [20/196]  Time 0.198 (1.274)      Loss 1.1714 (1.0130)    Prec@1 75.391 (74.126)  Prec@5 87.891 (91.853)
Test: [30/196]  Time 0.205 (1.199)      Loss 1.0284 (0.9888)    Prec@1 74.609 (74.849)  Prec@5 92.969 (92.036)
Test: [40/196]  Time 0.354 (1.101)      Loss 0.9944 (1.0499)    Prec@1 73.047 (72.933)  Prec@5 95.703 (92.073)
Test: [50/196]  Time 0.451 (1.065)      Loss 0.6899 (1.0433)    Prec@1 86.719 (73.032)  Prec@5 95.312 (92.310)
Test: [60/196]  Time 0.430 (1.033)      Loss 1.1791 (1.0446)    Prec@1 66.406 (72.688)  Prec@5 92.578 (92.508)
Test: [70/196]  Time 0.487 (1.030)      Loss 1.0826 (1.0279)    Prec@1 71.875 (73.234)  Prec@5 90.625 (92.567)
Test: [80/196]  Time 0.832 (1.015)      Loss 1.8822 (1.0599)    Prec@1 57.422 (72.632)  Prec@5 82.812 (92.110)
Test: [90/196]  Time 2.098 (1.017)      Loss 2.2423 (1.1228)    Prec@1 48.047 (71.321)  Prec@5 78.906 (91.312)
Test: [100/196] Time 0.199 (0.999)      Loss 1.6156 (1.1888)    Prec@1 60.938 (70.073)  Prec@5 84.375 (90.447)
Test: [110/196] Time 1.784 (1.003)      Loss 1.2417 (1.2139)    Prec@1 69.922 (69.640)  Prec@5 88.281 (90.072)
Test: [120/196] Time 0.264 (1.010)      Loss 1.9448 (1.2463)    Prec@1 58.984 (69.183)  Prec@5 79.297 (89.550)
Test: [130/196] Time 2.169 (1.016)      Loss 1.1295 (1.2835)    Prec@1 73.047 (68.350)  Prec@5 90.234 (89.057)
Test: [140/196] Time 0.302 (1.015)      Loss 1.5492 (1.3093)    Prec@1 63.672 (67.855)  Prec@5 84.766 (88.683)
Test: [150/196] Time 2.651 (1.020)      Loss 1.5608 (1.3354)    Prec@1 69.141 (67.459)  Prec@5 82.031 (88.271)
Test: [160/196] Time 0.260 (1.020)      Loss 1.4529 (1.3561)    Prec@1 69.922 (67.151)  Prec@5 84.766 (87.976)
Test: [170/196] Time 2.067 (1.023)      Loss 1.1040 (1.3789)    Prec@1 69.922 (66.642)  Prec@5 91.016 (87.653)
Test: [180/196] Time 1.118 (1.021)      Loss 1.5395 (1.3954)    Prec@1 60.547 (66.313)  Prec@5 87.891 (87.412)
Test: [190/196] Time 1.031 (1.024)      Loss 1.6755 (1.3916)    Prec@1 56.641 (66.371)  Prec@5 84.766 (87.484)
 * Prec@1 66.562 Prec@5 87.562
2. python caffe2darknet.py cfg/resnet-18.prototxt resnet-18.caffemodel resnet-18.cfg resnet-18.weights
3. python main.py -a resnet18-darknet --pretrained -e /home/xiaohang/ImageNet/
=> using pre-trained model 'resnet18-darknet'
load weights from resnet-18.weights
Test: [0/196]   Time 15.171 (15.171)    Loss 0.6839 (0.6839)    Prec@1 83.594 (83.594)  Prec@5 95.703 (95.703)
Test: [10/196]  Time 0.560 (1.835)      Loss 1.3643 (1.0104)    Prec@1 62.500 (74.183)  Prec@5 89.844 (91.868)
Test: [20/196]  Time 0.290 (1.345)      Loss 1.1714 (1.0130)    Prec@1 75.391 (74.126)  Prec@5 87.891 (91.853)
Test: [30/196]  Time 1.594 (1.237)      Loss 1.0284 (0.9888)    Prec@1 74.609 (74.849)  Prec@5 92.969 (92.036)
Test: [40/196]  Time 0.820 (1.151)      Loss 0.9944 (1.0499)    Prec@1 73.047 (72.933)  Prec@5 95.703 (92.073)
Test: [50/196]  Time 0.928 (1.114)      Loss 0.6899 (1.0433)    Prec@1 86.719 (73.032)  Prec@5 95.312 (92.310)
Test: [60/196]  Time 0.264 (1.081)      Loss 1.1791 (1.0446)    Prec@1 66.406 (72.688)  Prec@5 92.578 (92.508)
Test: [70/196]  Time 0.694 (1.080)      Loss 1.0826 (1.0279)    Prec@1 71.875 (73.234)  Prec@5 90.625 (92.567)
Test: [80/196]  Time 0.742 (1.059)      Loss 1.8822 (1.0599)    Prec@1 57.422 (72.632)  Prec@5 82.812 (92.110)
Test: [90/196]  Time 0.920 (1.057)      Loss 2.2423 (1.1228)    Prec@1 48.047 (71.321)  Prec@5 78.906 (91.312)
Test: [100/196] Time 0.251 (1.035)      Loss 1.6156 (1.1888)    Prec@1 60.938 (70.073)  Prec@5 84.375 (90.447)
Test: [110/196] Time 0.857 (1.034)      Loss 1.2417 (1.2139)    Prec@1 69.922 (69.640)  Prec@5 88.281 (90.072)
Test: [120/196] Time 0.857 (1.029)      Loss 1.9448 (1.2463)    Prec@1 58.984 (69.183)  Prec@5 79.297 (89.550)
Test: [130/196] Time 1.816 (1.024)      Loss 1.1295 (1.2835)    Prec@1 73.047 (68.350)  Prec@5 90.234 (89.057)
Test: [140/196] Time 0.475 (1.010)      Loss 1.5492 (1.3093)    Prec@1 63.672 (67.855)  Prec@5 84.766 (88.683)
Test: [150/196] Time 1.124 (1.003)      Loss 1.5608 (1.3354)    Prec@1 69.141 (67.459)  Prec@5 82.031 (88.271)
Test: [160/196] Time 0.812 (1.000)      Loss 1.4529 (1.3561)    Prec@1 69.922 (67.151)  Prec@5 84.766 (87.976)
Test: [170/196] Time 0.328 (0.989)      Loss 1.1040 (1.3789)    Prec@1 69.922 (66.642)  Prec@5 91.016 (87.653)
Test: [180/196] Time 1.271 (0.988)      Loss 1.5395 (1.3954)    Prec@1 60.547 (66.313)  Prec@5 87.891 (87.412)
Test: [190/196] Time 0.292 (0.980)      Loss 1.6755 (1.3916)    Prec@1 56.641 (66.371)  Prec@5 84.766 (87.484)
 * Prec@1 66.562 Prec@5 87.562

About

convert between pytorch, caffe prototxt/weights and darkness cfg/weights

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 66.7%
  • Protocol Buffer 33.3%