Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add option to to_df function to make one of the dims to columns #66

Merged
merged 2 commits into from
Nov 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 2 additions & 4 deletions examples/example3.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -3299,8 +3299,7 @@
}
],
"source": [
"stock_df = dynamic_stock.stock.to_df(index=False)\n",
"stock_df = stock_df.pivot(index=\"Time\", columns=\"Region\")[\"value\"]\n",
"stock_df = dynamic_stock.stock.to_df(dim_to_columns=\"Region\")\n",
"\n",
"fig = px.line(stock_df, title=\"In-use stocks of steel\")\n",
"fig.show()"
Expand Down Expand Up @@ -6385,8 +6384,7 @@
"inflow = dynamic_stock.inflow\n",
"outflow = dynamic_stock.outflow\n",
"with np.errstate(divide=\"ignore\"):\n",
" ratio_df = (outflow / inflow).to_df(index=False)\n",
"ratio_df = ratio_df.pivot(index=\"Time\", columns=\"Region\")[\"value\"]\n",
" ratio_df = (outflow / inflow).to_df(dim_to_columns=\"Region\")\n",
"\n",
"fig = px.line(ratio_df, title=\"Ratio outflow:inflow\")\n",
"fig.show()"
Expand Down
6 changes: 2 additions & 4 deletions examples/example3.py
Original file line number Diff line number Diff line change
Expand Up @@ -163,8 +163,7 @@ def read_parameter_values(self, parameter: str, dims: DimensionSet) -> Parameter
# First, we plot the steel stock in the different countries over time.

# %%
stock_df = dynamic_stock.stock.to_df(index=False)
stock_df = stock_df.pivot(index="Time", columns="Region")["value"]
stock_df = dynamic_stock.stock.to_df(dim_to_columns="Region")

fig = px.line(stock_df, title="In-use stocks of steel")
fig.show()
Expand All @@ -176,8 +175,7 @@ def read_parameter_values(self, parameter: str, dims: DimensionSet) -> Parameter
inflow = dynamic_stock.inflow
outflow = dynamic_stock.outflow
with np.errstate(divide="ignore"):
ratio_df = (outflow / inflow).to_df(index=False)
ratio_df = ratio_df.pivot(index="Time", columns="Region")["value"]
ratio_df = (outflow / inflow).to_df(dim_to_columns="Region")

fig = px.line(ratio_df, title="Ratio outflow:inflow")
fig.show()
Expand Down
10 changes: 3 additions & 7 deletions examples/example5.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -174,8 +174,8 @@
" self.stocks[\"in use\"].inflow[...] = self.flows[\"sysenv => market\"]\n",
" survival_model = NormalSurvival(\n",
" dims=self.stocks[\"in use\"].inflow.dims,\n",
" lifetime_mean=self.parameters[\"vehicle lifetime\"].values,\n",
" lifetime_std=self.parameters[\"vehicle lifetime\"].values * 0.3,\n",
" lifetime_mean=self.parameters[\"vehicle lifetime\"],\n",
" lifetime_std=self.parameters[\"vehicle lifetime\"] * 0.3,\n",
" )\n",
" if not isinstance(self.stocks[\"in use\"], InflowDrivenDSM):\n",
" self.stocks[\"in use\"] = self.stocks[\"in use\"].to_stock_type(\n",
Expand Down Expand Up @@ -4556,11 +4556,7 @@
"source": [
"np.nan_to_num(vehicle_mfa_2.flows[\"scrap => sysenv\"].values, copy=False)\n",
"scrap_outflow = vehicle_mfa_2.flows[\"scrap => sysenv\"].sum_nda_over(sum_over_dims=(\"r\", \"m\"))\n",
"outflow_df = pd.DataFrame(\n",
" data=scrap_outflow.values,\n",
" columns=scrap_outflow.dims[\"w\"].items,\n",
" index=scrap_outflow.dims[\"t\"].items,\n",
")\n",
"outflow_df = scrap_outflow.to_df(dim_to_columns=\"waste\")\n",
"outflow_df = outflow_df[outflow_df.index > 2017]\n",
"fig = px.line(outflow_df, title=\"Scrap outflow\")\n",
"fig.show()\n",
Expand Down
10 changes: 3 additions & 7 deletions examples/example5.py
Original file line number Diff line number Diff line change
Expand Up @@ -135,8 +135,8 @@ def compute_stock(self):
self.stocks["in use"].inflow[...] = self.flows["sysenv => market"]
survival_model = NormalSurvival(
dims=self.stocks["in use"].inflow.dims,
lifetime_mean=self.parameters["vehicle lifetime"].values,
lifetime_std=self.parameters["vehicle lifetime"].values * 0.3,
lifetime_mean=self.parameters["vehicle lifetime"],
lifetime_std=self.parameters["vehicle lifetime"] * 0.3,
)
if not isinstance(self.stocks["in use"], InflowDrivenDSM):
self.stocks["in use"] = self.stocks["in use"].to_stock_type(
Expand Down Expand Up @@ -349,11 +349,7 @@ def vehicle_new_registration(self, data, dims):
# %%
np.nan_to_num(vehicle_mfa_2.flows["scrap => sysenv"].values, copy=False)
scrap_outflow = vehicle_mfa_2.flows["scrap => sysenv"].sum_nda_over(sum_over_dims=("r", "m"))
outflow_df = pd.DataFrame(
data=scrap_outflow.values,
columns=scrap_outflow.dims["w"].items,
index=scrap_outflow.dims["t"].items,
)
outflow_df = scrap_outflow.to_df(dim_to_columns="waste")
outflow_df = outflow_df[outflow_df.index > 2017]
fig = px.line(outflow_df, title="Scrap outflow")
fig.show()
Expand Down
10 changes: 8 additions & 2 deletions sodym/named_dim_arrays.py
Original file line number Diff line number Diff line change
Expand Up @@ -237,12 +237,18 @@ def __setitem__(self, keys, item):
self.values[slice_obj.ids] = item.sum_values_to(slice_obj.dim_letters)
return

def to_df(self, index: bool = True):
def to_df(self, index: bool = True, dim_to_columns: str = None) -> pd.DataFrame:
multiindex = pd.MultiIndex.from_product([d.items for d in self.dims], names=self.dims.names)
df = pd.DataFrame({"value": self.values.flatten()})
df = df.set_index(multiindex)
if dim_to_columns is not None:
if dim_to_columns not in self.dims.names:
raise ValueError(f"Dimension name {dim_to_columns} not found in nda.dims.names")
df.reset_index(inplace=True)
index_names = [n for n in self.dims.names if n != dim_to_columns]
df = df.pivot(index=index_names, columns=dim_to_columns, values="value")
if not index:
df = df.reset_index()
df.reset_index(inplace=True)
return df

def split(self, dim_letter: str) -> dict:
Expand Down