-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add plotting script for poster bar graphs + formatting
- add `poster.csv` (which is just a filtered version of best results conv) - add plot pdfs as wellg
- Loading branch information
1 parent
6e88811
commit 7854aac
Showing
8 changed files
with
169 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
"""Script to plot bar graphs of savings as seen in the poster""" | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import pandas as pd | ||
from tueplots import bundles | ||
|
||
df = pd.read_csv("results/paper/poster.csv") | ||
df["Scaled M str"] = df["Scaled M"].apply(lambda x: f"{x:.2f}") | ||
df["M str"] = df["Memory Usage (GB)"].apply(lambda x: f"{x:.2f}") | ||
|
||
memsave_map = {False: "PyTorch", True: "+ MemSave"} | ||
df["colors"] = df["memsave"].apply(lambda x: memsave_map[x]) | ||
color_map = {memsave_map[False]: "#F05F42", memsave_map[True]: "#00E1D2"} | ||
|
||
# fig = px.bar(df, x='case', y='Scaled M', color='colors', text='M str', | ||
# category_orders={'case': ['All', 'Input', 'Norm', 'SurgicalFirst']}, | ||
# barmode='group', facet_col='model_clean', facet_col_wrap=3, | ||
# color_discrete_map={memsave_map[False]: '#F05F42', memsave_map[True]: '#00E1D2'}, | ||
# ) | ||
|
||
# fig.update_traces(width=0.6) | ||
# fig.show() | ||
|
||
width = 0.4 | ||
df["color_val"] = df["colors"].apply(lambda x: color_map[x]) | ||
|
||
names = { | ||
"bert": "BERT", | ||
"bart": "BART", | ||
"roberta": "RoBERTa", | ||
"gpt2": "GPT-2", | ||
"t5": "T5", | ||
"flan-t5": "FLAN-T5", | ||
"mistral-7b": "Mistral-7B", | ||
"transformer": "Transformer", | ||
"llama3-8b": "LLaMa3-8B", | ||
"phi3-4b": "Phi3-4B", | ||
# Conv | ||
"resnet101": "ResNet-101", | ||
"deeplabv3_resnet101": "DeepLabv3 (RN101)", | ||
"efficientnet_v2_l": "EfficientNetv2-L", | ||
"fcn_resnet101": "FCN (RN101)", | ||
"mobilenet_v3_large": "MobileNetv3-L", | ||
"resnext101_64x4d": "ResNeXt101-64x4d", | ||
"fasterrcnn_resnet50_fpn_v2": "Faster-RCNN (RN101)", | ||
"ssdlite320_mobilenet_v3_large": "SSDLite (MobileNetv3-L)", | ||
"vgg16": "VGG-16", | ||
} | ||
|
||
for chosen_model in ["resnet101", "efficientnet_v2_l", "mistral-7b", "t5"]: | ||
df_model = df[df["model_clean"] == chosen_model] | ||
with plt.rc_context(bundles.icml2024(column="full")): | ||
fig, ax = plt.subplots() | ||
# ax.set_xlabel("Case", size='large') | ||
ax.set_ylabel("Peak memory [GiB]", size="large") | ||
cases = [] | ||
for i, (case, group) in enumerate(df_model.groupby("case")): | ||
cases.append(case) | ||
for j, (memsave, mg) in enumerate(group.groupby("memsave")): # noqa: B007 | ||
r = ax.bar( | ||
i + j * width, | ||
mg["Memory Usage (GB)"], | ||
width, | ||
label=mg["colors"].item(), | ||
color=mg["color_val"], | ||
) | ||
ax.bar_label(r, mg["Scaled M str"], padding=-20, size="x-large") | ||
yoff = mg["Memory Usage (GB)"].item() * 0.05 | ||
if r[0].get_height() < 5: | ||
ax.text( | ||
i + j * width, | ||
r[0].get_height() + yoff, | ||
mg["colors"].item(), | ||
ha="center", | ||
va="bottom", | ||
rotation="vertical", | ||
size="x-large", | ||
) | ||
else: | ||
ax.text( | ||
i + j * width, | ||
yoff, | ||
mg["colors"].item(), | ||
ha="center", | ||
va="bottom", | ||
rotation="vertical", | ||
size="x-large", | ||
) | ||
|
||
# ax.bar(i + width, group['Scaled M'], width, label=group['M str']) | ||
# ax.bar_label(rects, padding=3) | ||
|
||
# for memsave, sub_group in group.groupby('memsave'): | ||
# ax.plot(sub_group['case'], sub_group['Memory Usage (GB)'], marker='o', linestyle=linestyle, color=color, label=f'{model_clean} - {"memsave" if memsave else "no memsave"}') | ||
# for j, txt in enumerate(sub_group['Scaled M str']): | ||
# ax.annotate(txt, (sub_group['case'].iloc[j], sub_group['Memory Usage (GB)'].iloc[j])) | ||
|
||
ax.set_xticks(np.arange(len(cases)) + width / 2, cases) | ||
ax.tick_params(labelsize="x-large") | ||
ax.set_title(names[chosen_model], fontsize="xx-large", fontweight=1000) | ||
# handles, labels = ax.get_legend_handles_labels() | ||
# unique = [(h, l) for i, (h, l) in enumerate(zip(handles, labels)) if l not in labels[:i]] | ||
# ax.legend(*zip(*unique)) | ||
|
||
# ax.legend() | ||
# fig.show() | ||
# fig.waitforbuttonpress() | ||
plt.savefig( | ||
f"results/paper/poster_plot_{chosen_model}.pdf", | ||
bbox_inches="tight", | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
model_clean,model,case,Time Taken (s),Memory Usage (GB),Scaled T,Scaled M,memsave | ||
efficientnet_v2_l,efficientnet_v2_l,All,0.7670447733253241,26.808164596557617,1.0,1.0,False | ||
efficientnet_v2_l,efficientnet_v2_l,Input (BN Eval),0.5853275060653687,26.80623340606689,0.7880858167473107,1.0,False | ||
efficientnet_v2_l,efficientnet_v2_l,Input,0.6206146785989404,26.808164596557617,0.8090983736300373,1.0,False | ||
efficientnet_v2_l,efficientnet_v2_l,Norm,0.617624219506979,26.808164596557617,0.8051996975736228,1.0,False | ||
efficientnet_v2_l,efficientnet_v2_l,Surgical,0.6779810208827257,26.808164596557617,0.8838871529539463,1.0,False | ||
efficientnet_v2_l,memsave_efficientnet_v2_l,All,0.7840075613930821,26.808164596557617,1.022114469269141,1.0,True | ||
efficientnet_v2_l,memsave_efficientnet_v2_l,Input (BN Eval),0.5787053339881822,10.448431015014648,0.7791697145036758,0.3897761709651427,True | ||
efficientnet_v2_l,memsave_efficientnet_v2_l,Input,0.6277032848447561,18.642004013061523,0.8183398240542218,0.6953853161381778,True | ||
efficientnet_v2_l,memsave_efficientnet_v2_l,Norm,0.625503615476191,18.642004013061523,0.8154721044046517,0.6953853161381778,True | ||
efficientnet_v2_l,memsave_efficientnet_v2_l,Surgical,0.6915900399908423,22.05434799194336,0.9016292973259341,0.8226728059844617,True | ||
mistral-7b,memsave_mistral-7b,All,2.548980531282723,37.66866302490234,1.2224257200714634,0.9039834132928382,True | ||
mistral-7b,memsave_mistral-7b,Input,1.4442284815013409,32.168663024902344,0.6926149571485977,0.7719928308337864,True | ||
mistral-7b,memsave_mistral-7b,Norm,1.4595470689237118,32.168663024902344,0.699961358986687,0.7719928308337864,True | ||
mistral-7b,memsave_mistral-7b,Surgical,1.7122022127732637,33.543663024902344,0.8211282892004004,0.8049904764485495,True | ||
mistral-7b,mistral-7b,All,2.085182346403599,41.66963958740234,1.0,1.0,False | ||
mistral-7b,mistral-7b,Input,1.5489048743620517,34.200904846191406,0.7428150718010407,0.8207631547773478,False | ||
mistral-7b,mistral-7b,Norm,1.5577463591471314,36.16963958740234,0.7470552212538351,0.8680094175409482,False | ||
mistral-7b,mistral-7b,Surgical,1.6676594512537122,36.013389587402344,0.7997667226226014,0.8642596850847253,False | ||
resnet101,memsave_resnet101,All,0.4432011162862181,8.557734489440918,0.9699415836748781,1.0933840979482345,True | ||
resnet101,memsave_resnet101,Input (BN Eval),0.3338263579644263,1.4200773239135742,0.7620312946412207,0.18144620911864504,True | ||
resnet101,memsave_resnet101,Input,0.3611809015274048,5.242091178894043,0.7904410949054845,0.6697589346887894,True | ||
resnet101,memsave_resnet101,Norm,0.35775987803936,5.242091178894043,0.7829542163353497,0.6697589346887894,True | ||
resnet101,memsave_resnet101,Surgical,0.3910391088575125,6.862116813659668,0.8557855081735115,0.876742485008887,True | ||
resnet101,resnet101,All,0.4569358853623271,7.826832771301269,1.0,1.0,False | ||
resnet101,resnet101,Input (BN Eval),0.3445483860559761,7.826436996459961,0.7865066566156454,1.0,False | ||
resnet101,resnet101,Input,0.3788085076957941,7.826832771301269,0.8290189495522289,1.0,False | ||
resnet101,resnet101,Norm,0.3715896429494023,7.826832771301269,0.8132205301729595,1.0,False | ||
resnet101,resnet101,Surgical,0.4043164802715182,7.826832771301269,0.8848429139044652,1.0,False | ||
resnext101_64x4d,memsave_resnext101_64x4d,All,0.6408866010606289,16.746541023254395,0.9845938795249098,1.105144109266399,True | ||
resnext101_64x4d,memsave_resnext101_64x4d,Input,0.520104899071157,9.87433385848999,0.79903698952186,0.6516307983533247,True | ||
resnext101_64x4d,memsave_resnext101_64x4d,Norm,0.5187254101037979,9.87433385848999,0.7969176810640359,0.6516307983533247,True | ||
resnext101_64x4d,memsave_resnext101_64x4d,Surgical,0.5633453754708171,13.32355260848999,0.8654673195371679,0.8792529549431838,True | ||
resnext101_64x4d,resnext101_64x4d,All,0.6509146708995104,15.15326452255249,1.0,1.0,False | ||
resnext101_64x4d,resnext101_64x4d,Input,0.5331473043188453,15.15326452255249,0.8190740325180867,1.0,False | ||
resnext101_64x4d,resnext101_64x4d,Norm,0.5326845943927765,15.15326452255249,0.8183631714071682,1.0,False | ||
resnext101_64x4d,resnext101_64x4d,Surgical,0.5835767788812518,15.15326452255249,0.8965488181036031,1.0,False | ||
t5,memsave_t5,All,1.9474648162722588,31.8445405960083,1.144910917764398,0.9535176092130268,True | ||
t5,memsave_t5,Input,1.5153652485460043,22.7976655960083,0.8908803912473512,0.6826280168560118,True | ||
t5,memsave_t5,Norm,1.5391185907647014,22.7976655960083,0.9048449366462439,0.6826280168560118,True | ||
t5,memsave_t5,Surgical,1.5937594240531323,25.2830171585083,0.9369681801908518,0.7570466278824155,True | ||
t5,t5,All,1.700974971987307,33.3969087600708,1.0,1.0,False | ||
t5,t5,Input,1.372872439213097,25.9439058303833,0.8071091355383809,0.7768355453724425,False | ||
t5,t5,Norm,1.3900730907917025,28.8500337600708,0.8172213663835587,0.8638534173127956,False | ||
t5,t5,Surgical,1.469195489771664,27.7728853225708,0.8637372765427305,0.8316004790172659,False |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.