-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[ADD] Implement Conv1d by copying from Conv2d
- Loading branch information
Showing
1 changed file
with
187 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,187 @@ | ||
"""Implementation of a memory saving Conv1d layer. | ||
This is done by not saving the inputs/weights if weight/inputs dont require grad. | ||
""" | ||
|
||
import torch | ||
import torch.nn as nn | ||
|
||
|
||
class MemSaveConv1d(nn.Conv1d): | ||
"""MemSaveConv1d.""" | ||
|
||
def __init__( | ||
self, | ||
in_channels: int, | ||
out_channels: int, | ||
kernel_size, | ||
stride=1, | ||
padding=0, | ||
dilation=1, | ||
groups: int = 1, | ||
bias: bool = True, | ||
padding_mode: str = "zeros", | ||
device=None, | ||
dtype=None, | ||
) -> None: | ||
"""Inits a Conv1d layer with the given params. | ||
Args: | ||
in_channels: in_channels | ||
out_channels: out_channels | ||
kernel_size: kernel_size | ||
stride: stride | ||
padding: padding | ||
dilation: dilation | ||
groups: groups | ||
bias: bias | ||
padding_mode: padding_mode | ||
device: device | ||
dtype: dtype | ||
""" | ||
super().__init__( | ||
in_channels, | ||
out_channels, | ||
kernel_size, | ||
stride, | ||
padding, | ||
dilation, | ||
groups, | ||
bias, | ||
padding_mode, | ||
device, | ||
dtype, | ||
) | ||
|
||
def forward(self, input: torch.Tensor) -> torch.Tensor: | ||
"""Forward pass. | ||
Args: | ||
input: Input to the network [B, C_in, H, W] | ||
Returns: | ||
torch.Tensor: Output [B, C_out, H_out, W_out] | ||
""" | ||
return conv1dMemSave( | ||
input, | ||
self.weight, | ||
self.bias, | ||
self.stride, | ||
self.padding, | ||
self.dilation, | ||
self.groups, | ||
) | ||
|
||
@classmethod | ||
def from_nn_Conv1d(cls, conv1d: nn.Conv1d): | ||
"""Converts a nn.Conv1d layer to MemSaveConv1d. | ||
Args: | ||
conv1d : The nn.Conv1d layer | ||
Returns: | ||
obj: The MemSaveConv1d object | ||
""" | ||
obj = cls( | ||
conv1d.in_channels, | ||
conv1d.out_channels, | ||
conv1d.kernel_size, | ||
conv1d.stride, | ||
conv1d.padding, | ||
conv1d.dilation, | ||
conv1d.groups, | ||
True if conv1d.bias is not None else False, | ||
conv1d.padding_mode, | ||
device=getattr(conv1d, "device", None), | ||
dtype=getattr(conv1d, "dtype", None), | ||
) | ||
obj.weight = conv1d.weight | ||
obj.bias = conv1d.bias | ||
return obj | ||
|
||
|
||
class _MemSaveConv1d(torch.autograd.Function): | ||
@staticmethod | ||
def forward(x, weight, bias, stride, padding, dilation, groups): | ||
return nn.functional.conv1d(x, weight, bias, stride, padding, dilation, groups) | ||
|
||
@staticmethod | ||
def setup_context(ctx, inputs, output): | ||
x, weight, bias, stride, padding, dilation, groups = inputs | ||
# print('setting up context', ctx.needs_input_grad) | ||
need_grad = [] | ||
if ctx.needs_input_grad[0]: | ||
# print('weight saved') | ||
need_grad.append(weight) | ||
if ctx.needs_input_grad[1]: | ||
# print('x saved') | ||
need_grad.append(x) | ||
# bias doesnt need anything for calc | ||
ctx.bias_exists = bias is not None | ||
ctx.stride = stride | ||
ctx.padding = padding | ||
ctx.dilation = dilation | ||
ctx.groups = groups | ||
ctx.x_shape = x.shape | ||
ctx.weight_shape = weight.shape | ||
|
||
ctx.save_for_backward(*need_grad) | ||
|
||
@staticmethod | ||
def backward(ctx, grad_output): | ||
x = weight = None | ||
|
||
current_idx = 0 | ||
if ctx.needs_input_grad[0]: | ||
# print('0 needs weight') | ||
weight = ctx.saved_tensors[current_idx] | ||
current_idx += 1 | ||
elif ctx.needs_input_grad[1]: | ||
# print('1 needs x') | ||
x = ctx.saved_tensors[current_idx] | ||
current_idx += 1 | ||
|
||
if weight is not None: | ||
x = torch.zeros(ctx.x_shape, device=weight.device) | ||
if x is not None: | ||
weight = torch.zeros(ctx.weight_shape, device=x.device) | ||
|
||
# print(current_idx) | ||
|
||
grad_x, grad_weight, grad_bias = torch.ops.aten.convolution_backward( | ||
grad_output, | ||
x, | ||
weight, | ||
weight.shape[0] if ctx.bias_exists else None, | ||
ctx.stride, | ||
ctx.padding, | ||
ctx.dilation, | ||
False, | ||
[0], | ||
ctx.groups, | ||
ctx.needs_input_grad[:3], | ||
) | ||
|
||
# print('grads are ', (grad_x is not None), (grad_weight is not None), (grad_bias is not None)) | ||
|
||
return grad_x, grad_weight, grad_bias, None, None, None, None, None | ||
|
||
|
||
def conv1dMemSave( | ||
input, weight, bias, stride, padding, dilation, groups | ||
) -> torch.Tensor: | ||
"""Functional form of the memory saving convolution. | ||
Args: | ||
input: input [B, C_in, H, W] | ||
weight: weight | ||
bias: bias | ||
stride: stride | ||
padding: padding | ||
dilation: dilation | ||
groups: groups | ||
Returns: | ||
torch.Tensor: Output of the conv operation [B, C_out, H_out, W_out] | ||
""" | ||
return _MemSaveConv1d.apply(input, weight, bias, stride, padding, dilation, groups) |