This is work-in-progress instructions for deploying softwrae stack with Spack.
CREDIT : Based on spack-packagelist
Clone repository :
git clone https://github.com/pramodk/spack-deploy.git
cd spack-deploy
Setup virtual environment :
SPACKD_VIRTUALENV_PATH=`pwd`/spackd-venv
virtualenv -p $(which python) ${SPACKD_VIRTUALENV_PATH} --clear
. ${SPACKD_VIRTUALENV_PATH}/bin/activate
pip install --force-reinstall -U .
And you should have spackd
available :
→ spackd --help
Usage: spackd [OPTIONS] COMMAND [ARGS]...
This command helps with common tasks needed to deploy software stack with
Spack in continuous integration pipeline
Options:
--input FILENAME YAML file containing the specification for a production
environment
--help Show this message and exit.
Commands:
compilers Dumps the list of compilers needed by a...
packages List all the packages that are part of an...
stack List all the providers for a given target.
targets Dumps the list of targets that are available
On OSX I saw :
Could not fetch URL https://pypi.python.org/simple/click/: There was a problem confirming the ssl certificate: [SSL: TLSV1_ALERT_PROTOCOL_VERSION] tlsv1 alert protocol version (_ssl.c:590) - skipping
See this : from virtual env do:
curl https://bootstrap.pypa.io/get-pip.py | python
The compiler toolchain specification is based on multiple axis:
axis:
- architecture
- compiler
- mpi
- lapack
- python
These axis represent how the hierarchical modules (e.g. with LMOD) are exposed to end users. For example :
- two compute architectures are available : linux-rhel7-x86_64 and darwin-sierra-x86_64
- multiple compilers are available for each architecture : gnu, intel, llvm
- each compiler has multiple mpi libraries : hpe-mpi, mvapich2
- each mpi could provide multiple lapack libraries : intel-mkl, netlib-lapack
- different python versions could be used for compiling package : [email protected], [email protected]
We define compiler toolchains in packages/compiler-toolchains.yaml as:
core:
architecture:
- x86_64
- x86_64_knl
compiler:
- [email protected]
- [email protected]
mpi: None
lapack: None
python: None
# stable gnu toolchain
gnu-stable:
architecture:
- x86_64
- x86_64
compiler:
- [email protected]
- [email protected]
mpi:
- [email protected]
- [email protected] process_managers=slurm fabrics=mrail file_systems=gpfs threads=multiple
lapack:
- [email protected]
- [email protected]
python:
- [email protected]
- [email protected]
The core
toolchain typically represent system compiler. This compiler is used only to bootstrap/install other compilers and some basic utility packages. And hence it doesn't provide any mpi, lapack or python packages.
The next toolchain gnu-stable
represent default GNU compiler. We are going to provide two mpi libraries and two python versions. Note that the length of each axis should be same (and hence there are duplicate entries).
Once compiler toolchains are defined, we can define packages to build for each toolchain as:
packages:
compilers:
target_matrix:
- core
requires:
- architecture
- compiler
specs:
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- intel-parallel-studio+advisor+clck+daal+gdb+inspector+ipp+itac+mkl+mpi+rpath+shared+tbb+vtune@cluster.2018.3
- intel-parallel-studio+advisor+clck+daal+gdb+inspector+ipp+itac+mkl+mpi+rpath+shared+tbb+vtune@cluster.2017.7
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
Here is brief summary of what's going on:
compilers
here is a just tagtarget_matrix
indicates which compiler toolchain we are going to use (see Toolchain Specifications)requires
indicates which axis will be used while building the packagesspecs
indicates which packages we are going to build
It would be more clear if we look at the package specs generated with spackd
command.
To see which packages will be installed, for example, to install all compilers on the system:
→ spackd --input packages/compiler-packages.yaml packages x86_64
[email protected] %[email protected] target=x86_64
[email protected] %[email protected] target=x86_64
[email protected] %[email protected] target=x86_64
[email protected] %[email protected] target=x86_64
intel-parallel-studio+advisor+clck+daal+gdb+inspector+ipp+itac+mkl+mpi+rpath+shared+tbb+vtune@cluster.2018.3 %[email protected] target=x86_64
intel-parallel-studio+advisor+clck+daal+gdb+inspector+ipp+itac+mkl+mpi+rpath+shared+tbb+vtune@cluster.2017.7 %[email protected] target=x86_64
[email protected] %[email protected] target=x86_64
[email protected] %[email protected] target=x86_64
[email protected] %[email protected] target=x86_64
[email protected] %[email protected] target=x86_64
[email protected] %[email protected] target=x86_64
[email protected] %[email protected] target=x86_64
These specs can be the used to install packages using spack install
command. This become more useful when multiple compilers and mpi libraries come into picture, for example, to install all parallel libraries on the system :
→ spackd --input packages/parallel-libraries.yaml packages x86_64
[email protected] ^[email protected] %[email protected] target=x86_64
[email protected] ^[email protected] %[email protected] target=x86_64
...
[email protected] ^[email protected] %[email protected] target=x86_64
[email protected] ^[email protected] %[email protected] target=x86_64
...
[email protected] ^[email protected] %[email protected] target=x86_64
[email protected] ^[email protected] %[email protected] target=x86_64
...
[email protected] ^[email protected] process_managers=slurm fabrics=mrail file_systems=gpfs threads=multiple %[email protected] target=x86_64
[email protected] ^[email protected] process_managers=slurm fabrics=mrail file_systems=gpfs threads=multiple %[email protected] target=x86_64
....
Similarly, packages for x86_64_knl
target can be generated with :
→ spackd --input packages/parallel-libraries.yaml packages x86_64_knl
[email protected] ^[email protected] %[email protected] target=x86_64_knl
[email protected] ^[email protected] %[email protected] target=x86_64_knl
[email protected] ^[email protected] %[email protected] target=x86_64_knl
[email protected] ^[email protected] %[email protected] target=x86_64_knl
The specs become complicated but they are complete considering architecture, compiler and mpi dependecies.
Here is list of all packages (in order) that we will be installing :
spackd --input packages/compiler-packages.yaml packages x86_64 --output compiler-packages.txt
spackd --input packages/build-dep-packages.yaml packages x86_64 --output buiild-dep-packages.txt
spackd --input packages/serial-libraries.yaml packages x86_64 --output serial-libraries.txt
spackd --input packages/python-packages.yaml packages x86_64 --output python-packages.txt
spackd --input packages/parallel-libraries.yaml packages x86_64 --output parallel-libraries.txt
Similarly for target x86_64_knl
.
Here is how deployment workflow should look like :
See exisiting scripts in scripts/
directory and Jenkinsfile
. Those should be refactored for new workflow.
→ spackd --input packages/parallel-libraries.yaml targets
x86_64
→ spackd --input packages/parallel-libraries.yaml compilers x86_64
[email protected]%[email protected] target=x86_64
[email protected]%[email protected] target=x86_64
[email protected]%[email protected] target=x86_64
[email protected]%[email protected] target=x86_64
[email protected]%[email protected] target=x86_64