Skip to content

qeeji/Audio2Face

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Audio2Face

Discription


ue

We create a project that transforms audio to blendshape weights,and drives the digital human,xiaomei,in UE project.

Base Module


figure1

figure2

The framework we used contains three parts.In Formant network step,we perform fixed-function analysis of the input audio clip.In the articulation network,we concatenate an emotional state vector to the output of each convolution layer after the ReLU activation. The fully-connected layers at the end expand the 256+E abstract features to blendshape weights .

Usage


pipeline

this pipeline shows how we use FACEGOOD Audio2Face.

Test video

Prepare data

  • step1: record voice and video ,and create animation from video in maya. note: the voice must contain vowel ,exaggerated talking and normal talking.Dialogue covers as many pronunciations as possible.
  • step2: we deal the voice with LPC,to split the voice into segment frames corresponding to the animation frames in maya.

Input data

Use ExportBsWeights.py to export weights file from Maya.Then we can get BS_name.npy and BS_value.npy .

Use step1_LPC.py to deal with wav file to get lpc_*.npy . Preprocess the wav to 2d data.

train

we recommand that uses FACEGOOD avatary to produces trainning data.its fast and accurate. http://www.avatary.com

the data for train is stored in dataSet1

python step14_train.py --epochs 8 --dataSet dataSet1

test

In folder /test,we supply a test application named AiSpeech.
wo provide a pretrained model,zsmeif.pb
In floder /example/ueExample, we provide a packaged ue project that contains a digit human created by FACEGOOD can drived by /AiSpeech/zsmeif.py.

you can follow the steps below to use it:

  1. make sure you connect the microphone to computer.
  2. run the script in terminal.

    python zsmeif.py

  3. when the terminal show the message "run main", please run FaceGoodLiveLink.exe which is placed in /example/ueExample/ folder.
  4. click and hold on the left mouse button on the screen in UE project, then you can talk with the AI model and wait for the voice and animation response.

Dependences

tersorflow-gpu 1.15

python-libs: pyaudio requests websocket websocket-client

Data


The testing data, Maya model, and ue4 test project can be downloaded from the link below.

data_all code : n6ty

GoogleDrive

Reference


Audio-Driven Facial Animation by Joint End-to-End Learning of Pose and Emotion

Contact

fgcode

Wechat: FACEGOOD_CHINA

License

Audio2Face Core is released under the terms of the MIT license.See COPYING for more information or see https://opensource.org/licenses/MIT.

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.8%
  • Batchfile 0.2%