Skip to content

randy2332/A_Semantic_Mapping_Framework

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

55 Commits
 
 
 
 
 
 
 
 

Repository files navigation

In this project, we

  • Train a semantic segmentation model to predict objects in the

    There are two dataset we would like to train.

    • Dataset1: Collect data from apartment_1, apartment_2, frl_apartment_0, frl_apartment_1, room_0, room_1 , room_2, hotel_0, office_0, office_1.
    • Dataset2: Collect data from apartment_0 (the same as testing scenario).

    You can download data using link below.

    https://docs.google.com/document/d/1PCaJ2L7kWUCN7w7erHnxOBDoCcsuIic5/edit

    model other: trained by other scenes.

    model apartment_0: trained by apartment_0.

    We can observe the domain shift in this task.

  • Reconstruat the 3D semantic map environment of Replica

  • Implement our own voxel down function


Execution program

You have the option to choose from two models, two floors, and two ICP (Iterative Closest Point) algorithms.

-f 1

-f 2

-d dataset1

-d dataset2

-v open3d

-v myicp

e.g. Below, it means using the Open3D algorithm for floor 1 and pictures trained by dataset2.

python 3d_semantic_map.py -f 1 -d dataset2 -v open3d

you have to put the data like below

data_collection_dataset1
	-first_floor
		-depth
			-1.png
			...
		-gt
			-1.png
			...
		-sem
			-1.png
			...
	-second_floor
		-depth
			-1.png
			...
		-gt
			-1.png
			...
		-sem
			-1.png
			...
data_collection_dataset2
	-first_floor
		-depth
			-1.png
			...
		-gt
			-1.png
			...
		-sem
			-1.png
			...
	-second_floor
		-depth
			-1.png
			...
		-gt
			-1.png
			...
		-sem
			-1.png
			...

Results

Task1:

dataset1floor1gt.png

-Semantic map (trained on apartment_0)

dataset2floor1result.png

-Semantic map (trained on other scenes)

dataset1floor1result.png

  • floor2

    -Semantic map (ground truth)

floor2gt.png

-Semantic map (trained on apartment_0)

dataset2floor2result.png

-Semantic map (trained on other scenes)

dataset1floor2result.png

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages