Skip to content

Commit

Permalink
Add numeric_only=True
Browse files Browse the repository at this point in the history
  • Loading branch information
raphaelvallat committed Jan 13, 2024
1 parent fdb3c60 commit 947e420
Show file tree
Hide file tree
Showing 2 changed files with 14 additions and 10 deletions.
2 changes: 1 addition & 1 deletion pingouin/pairwise.py
Original file line number Diff line number Diff line change
Expand Up @@ -1049,7 +1049,7 @@ def pairwise_gameshowell(data=None, dv=None, between=None, effsize="hedges"):
labels = np.array(list(grp.groups.keys()))
n = grp.count().to_numpy()
gmeans = grp.mean(numeric_only=True).to_numpy()
gvars = grp.var().to_numpy() # numeric_only=True added in pandas 1.5, set to False in 2.0
gvars = grp.var(numeric_only=True).to_numpy() # numeric_only=True added in pandas 1.5

# Pairwise combinations
g1, g2 = np.array(list(combinations(np.arange(ng), 2))).T
Expand Down
22 changes: 13 additions & 9 deletions pingouin/parametric.py
Original file line number Diff line number Diff line change
Expand Up @@ -549,7 +549,7 @@ def rm_anova(
rm = list(data[within].unique())
n_rm = len(rm)
n_obs = int(grp_with.count().max())
grandmean = data[dv].mean()
grandmean = data[dv].mean(numeric_only=True)

# Calculate sums of squares
ss_with = ((grp_with.mean(numeric_only=True) - grandmean) ** 2 * grp_with.count()).sum()
Expand Down Expand Up @@ -583,7 +583,7 @@ def rm_anova(
# Compute sphericity using Mauchly test, on the wide-format dataframe
# Sphericity assumption only applies if there are more than 2 levels
if correction == "auto" or (correction is True and n_rm >= 3):
spher, W_spher, chi_sq_spher, ddof_spher, p_spher = sphericity(data_piv, alpha=0.05)
spher, W_spher, _, _, p_spher = sphericity(data_piv, alpha=0.05)
if correction == "auto":
correction = True if not spher else False
else:
Expand Down Expand Up @@ -697,7 +697,7 @@ def rm_anova2(data=None, dv=None, within=None, subject=None, effsize="ng2"):
n_a = data[a].nunique()
n_b = data[b].nunique()
n_s = data[subject].nunique()
mu = data[dv].mean()
mu = data[dv].mean(numeric_only=True)

# Groupby means
# I think that observed=True is actually not needed here since we have already used
Expand Down Expand Up @@ -991,7 +991,9 @@ def anova(data=None, dv=None, between=None, ss_type=2, detailed=False, effsize="
# Calculate sums of squares
grp = data.groupby(between, observed=True, group_keys=False)[dv]
# Between effect
ssbetween = ((grp.mean(numeric_only=True) - data[dv].mean()) ** 2 * grp.count()).sum()
ssbetween = (
(grp.mean(numeric_only=True) - data[dv].mean(numeric_only=True)) ** 2 * grp.count()
).sum()
# Within effect (= error between)
# = (grp.var(ddof=0) * grp.count()).sum()
sserror = grp.transform(lambda x: (x - x.mean()) ** 2).sum()
Expand Down Expand Up @@ -1072,7 +1074,7 @@ def anova2(data=None, dv=None, between=None, ss_type=2, effsize="np2"):
# Sums of squares
ss_fac1 = aov_fac1.at[0, "SS"]
ss_fac2 = aov_fac2.at[0, "SS"]
ss_tot = ((data[dv] - data[dv].mean()) ** 2).sum()
ss_tot = ((data[dv] - data[dv].mean(numeric_only=True)) ** 2).sum()
ss_resid = np.sum(grp_both.apply(lambda x: (x - x.mean()) ** 2))
ss_inter = ss_tot - (ss_resid + ss_fac1 + ss_fac2)
# Degrees of freedom
Expand Down Expand Up @@ -1340,12 +1342,14 @@ def welch_anova(data=None, dv=None, between=None):

# Compute weights and ajusted means
grp = data.groupby(between, observed=True, group_keys=False)[dv]
weights = grp.count() / grp.var()
adj_grandmean = (weights * grp.mean()).sum() / weights.sum()
weights = grp.count() / grp.var(numeric_only=True)
adj_grandmean = (weights * grp.mean(numeric_only=True)).sum() / weights.sum()

# Sums of squares (regular and adjusted)
ss_res = grp.apply(lambda x: (x - x.mean()) ** 2).sum()
ss_bet = ((grp.mean(numeric_only=True) - data[dv].mean()) ** 2 * grp.count()).sum()
ss_bet = (
(grp.mean(numeric_only=True) - data[dv].mean(numeric_only=True)) ** 2 * grp.count()
).sum()
ss_betadj = np.sum(weights * np.square(grp.mean(numeric_only=True) - adj_grandmean))
ms_betadj = ss_betadj / ddof1

Expand Down Expand Up @@ -1504,7 +1508,7 @@ def mixed_anova(
)

# SUMS OF SQUARES
grandmean = data[dv].mean()
grandmean = data[dv].mean(numeric_only=True)
ss_total = ((data[dv] - grandmean) ** 2).sum()
# Extract main effects of within and between factors
aov_with = rm_anova(
Expand Down

0 comments on commit 947e420

Please sign in to comment.