Skip to content

rbodo/phossim

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Phossim

Creating modular training and evaluation pipelines for simulated prosthetic vision.

This software provides a structured collection of tools to enable flexible optimization and evaluation of models for phosphene vision in a wide range of virtual and real environments and using different filtering techniques. It makes use of a highly detailed model of phosphenes elicited by cortical stimulation (see the corresponding preprint).

Pipeline!

Getting started

Please check the scripts in the examples directory. They illustrate the following pipelines:

Script Environment Filters Phosphenes Agent
aihabitat_edge_realistic_human.py Navigation in AI habitat Grayscale, edges Dynaphos Human (via display + keyboard)
breakout_e2e_basic_ppo.py Solving the Atari Breakout game Grayscale, DNN Basic RL agent trained via PPO
breakout_edge_basic_ppo.py Solving the Atari Breakout game Grayscale, edges Basic RL agent trained via PPO
demo_human.py Perceive real world via a camera Toggle edge filter interactively Toggle phosphene model interactively Human (via display)
dvs_basic_human.py Perceive real world via a silicon retina None Basic Human (via display)
hallway_edge_basic_a2c.py Navigating through a simulated hallway Edges Basic RL agent trained via A2C
hallway_edge_realistic_human.py Navigating through a simulated hallway Edges Dynaphos Human (via VR headset + keyboard)

Note that for some of these pipelines to work you will need to install third-party software (AI Habitat, Atari) or hardware (Dynamic Vision Sensor, VR headset).

How to extend it

A central aspect of this software is the use of a common interface for the building blocks of the phosphene vision pipeline. This interface should enable you to add your own environments / algorithms / agents without having to deal with the low-level implementation of the framework. Underneath this common interface, we made the following design choices for the individual components:

  • The Environment inherits from OpenAI Gym, which is an ubiquitously used framework for interacting with simulated environments. It comes with a large set of built-in environments (Atari, MuJoCo, classic control) and integrations with Gazebo, Unity, PyBullet, Carla. You can bring your own environments to our framework and only need to implement a “step” method which adheres to the OpenAI Gym API.
  • Filter stage: Using OpenAI Gym internally, we can wrap any preprocessing algorithm into a class called gym.ObservationWrapper, which automatically applies the desired transformation to the observations from the environment. This way, you can easily add your own custom computer vision algorithms and stack them to arbitrary feature extraction pipelines.
  • Phosphene simulator: Internally, the phosphene simulator is treated like an image processing method and wrapped into a gym.ObservationWrapper. On the surface, it forms just another layer in the stack of filters applied to the environment observations.
  • The Agent inherits from stable-baselines3, a widely used third-party framework which provides reliable implementations of state-of-the-art RL algorithms in PyTorch and is tightly integrated with OpenAI Gym. Note that using stable-baselines for the agent does not restrict us to virtual agents: We have implemented human interaction for behavioral experiments as well.

Acknowledgements

This software was developed by the ArtCogSys group at the Donders Centre for Cognition, as part of the EU Horizon2020 project NeuraViPeR (grant agreement No 899287). Please see our associated publications:

About

Simulated environments for phosphene vision.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages