Skip to content
/ bss Public
forked from nrswn40k1/bss

工学博覧会 : 音源分離チーム

Notifications You must be signed in to change notification settings

rmithyx/bss

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 

Repository files navigation

BSS (Blind Source Separation)

工学博覧会2019 : 音声処理班音源分離チーム

FDICA


FDICA is frequency domain independent component analysis.

Requirements (library dependency)

You need Python 3.4 or later to run FDICA.

  • munkres
  • tqdm
  • numpy
  • scipy

Quick start

First, install libraries and change the current directory to src.

pip install numpy
pip install scipy
pip install tqdm
pip install munkres
cd src

Second, for instance,

import numpy as np
import scipy.io.wavfile as wf
from FDICA import ICA, FDICA

#prepare data
rate1, data1 = wf.read('./mix_1.wav')
rate2, data2 = wf.read('./mix_2.wav')
rate3, data3 = wf.read('./mix_3.wav')
if rate1 != rate2 or rate2 != rate3:
    raise ValueError('Sampling_rate_Error')

data = [data1.astype(float), data2.astype(float), data3.astype(float)]

y = FDICA(data, sample_freq=rate1).fdica()

y = [(y_i * 32767 / max(np.absolute(y_i))).astype(np.int16) for y_i in np.asarray(y)]

wf.write('./music1.wav', rate1, y[0])
wf.write('./music2.wav', rate2, y[1])
wf.write('./music3.wav', rate3, y[2])

Usage

You can choose three different fai function.

Reference

  • Evaluation of blind signal separation method using directivity pattern under reverberant condition
  • An Approach to Blind Source Separation Based on Temporal Structure of Speech Signals.

IVA


IVA is independent vector analysis.

Requirements (library dependency)

You need Python 3.6 or later to run IVA.

  • tqdm
  • numpy
  • scipy

Quick start

First, install libraries and change the current directory to src.

cd src

Second, for instance,

import numpy as np
import cis
from IVA import IVA

rate1, data1 = cis.wavread('./samples/mixdata/mix1.wav')
rate2, data2 = cis.wavread('./samples/mixdata/mix2.wav')
rate3, data3 = cis.wavread('./samples/mixdata/mix3.wav')
if rate1 != rate2 or rate2 != rate3:
    raise ValueError('Sampling_rate_Error')
fs = rate1
x = np.array([data1, data2, data3], dtype=np.float32)
y = IVA(x, fs).iva()

cis.wavwrite('./samples/sepdata/IVA/music1_r.wav', fs, y[0])
cis.wavwrite('./samples/sepdata/IVA/music2_r.wav', fs, y[1])
cis.wavwrite('./samples/sepdata/IVA/music3_r.wav', fs, y[2])

Reference

  • Blind Source Separation Exploiting Higher-Order Frequency Dependencies

ILRMA


ILRMA is Independent Low-Rank Matrix Analysis.

Requirements (library dependency)

You need Python 3.6 or later to run ILRMA.

  • tqdm
  • numpy
  • scipy

Quick start

First, install libraries and change the current directory to src.

cd src

Second, for instance,

import numpy as np
import cis
from ILRMA import ILRMA

rate1, data1 = cis.wavread('./samples/mixdata/mix1.wav')
rate2, data2 = cis.wavread('./samples/mixdata/mix2.wav')
rate3, data3 = cis.wavread('./samples/mixdata/mix3.wav')
if rate1 != rate2 or rate2 != rate3:
    raise ValueError('Sampling_rate_Error')
fs = rate1
x = np.array([data1, data2, data3], dtype=np.float32)
y = ILRMA(x, fs, L=2).ilrma()       # L is # of bases for each source

cis.wavwrite('./samples/sepdata/ilrma_1.wav', fs, y[0])
cis.wavwrite('./samples/sepdata/ilrma_2.wav', fs, y[1])
cis.wavwrite('./samples/sepdata/ilrma_3.wav', fs, y[2])

Reference

  • Blind Source Separation Based on Independent Low-Rank Matrix Analysis

Speaker Recognition


MFCC is used to recognize speaker

Requirements (library dependency)

  • numpy
  • scipy
  • librosa
  • sklearn
  • pickle

Facial Recognition


Requirments (Library dependency)

  • opencv-python
  • opencv-contrib-python
  • moviepy

About

工学博覧会 : 音源分離チーム

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%