Skip to content

A Simple Face Recognition Application using Python, OpenCV and Scikit-Learn on Custom Built Data Set

Notifications You must be signed in to change notification settings

samhaldia/face-recognition

Repository files navigation

#Introduction

This repository Uses OpenCV pre-trained Caffe deep learning model to recognize faces. Dynamically Creating DataSet of Images to label, using Bing Search API

To Get BIng Search API Endpoints and API Key Follow below URLs to Register and fetch key:

Go to https://azure.microsoft.com/en-us/try/cognitive-services/?api=bing-image-search-api and register yourself

Once registered visit: https://azure.microsoft.com/en-us/try/cognitive-services/my-apis/

#Requiste Libraries:

pip install requests pip install opencv-contrib-python pip install scikit-learn

#Steps to Proceed:

Create a file bing_search_image_api.python

Create Folder dataset/amirkhan

Run the program

#Creates our Data set with below search query in provided path python search_bing_api.py --query "Amir Khan" --output dataset/amirkhan

#Face Recognition Steps:

Embedding data to a dictionary and then serialize the data in a pickle file with available Datasets

python extract_embeddings.py --dataset dataset --embeddings output/embeddings.pickle --detector face_detection_model \ --embedding-model openface_nn4.small2.v1.t7

Train Using Linear Support Vector Machine model on top of embeddings

python train_model.py --embeddings output/embeddings.pickle --recognizer output/recognizer.pickle --le output/le.pickle

Test input images to detect faces:

python recognize.py --detector face_detection_model --embedding-model openface_nn4.small2.v1.t7 \ --recognizer output/recognizer.pickle --le output/le.pickle --image images/amir.jpg

About

A Simple Face Recognition Application using Python, OpenCV and Scikit-Learn on Custom Built Data Set

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages