Skip to content

An extremely simple Python library to perform TF-IDF document comparison.

License

Notifications You must be signed in to change notification settings

srirambaskaran/python-tf-idf

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

The simplest TF-IDF library imaginable.

Usage

Add your documents as two-element lists [doc_name, [list_of_words_in_the_document]] with addDocument(doc_name, list_of_words).

table.addDocument("foo", ["alpha", "bravo", "charlie", "delta", "echo", "foxtrot", "golf", "hotel"])

Get a list of all the [doc_name, similarity_score] pairs relative to a list of words by calling similarities([list_of_words]). Resulting similarities will always be between 0.0 and 1.0, inclusive.

table.similarities(["alpha", "bravo", "charlie"])

So, for example:

import tfidf

table = tfidf.TfIdf()
table.addDocument("foo", ["alpha", "bravo", "charlie", "delta", "echo", "foxtrot", "golf", "hotel"])
table.addDocument("bar", ["alpha", "bravo", "charlie", "india", "juliet", "kilo"])
table.addDocument("baz", ["kilo", "lima", "mike", "november"])

print table.similarities(["alpha", "bravo", "charlie"]) # => [['foo', 0.6875], ['bar', 0.75], ['baz', 0.0]]

Run the tests

The tests use the standard library's unittest module, so there's no need to install anything. Just run:

$ python test_tfidf.py

Disclaimer

This library is a pretty clean example of how TF-IDF operates. However, it's totally unconcerned with efficiency (it's just an exercise to brush up my Python skills), so you probably don't want to be using it in production. If you're looking for a more heavy-duty Python library to do information retrieval and topic modeling, I'd suggest taking a look at Gensim.

About

An extremely simple Python library to perform TF-IDF document comparison.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%