Skip to content

Autologistic Actor Attribute Model (ALAAM) parameter estimation, simulation, and goodness-of-fit

License

Notifications You must be signed in to change notification settings

stivalaa/ALAAMEE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ALAAMEE

Autologistic Actor Attribute Model (ALAAM) parameter estimation using Equilibrium Expectation (EE) algorithm. Also includes an implementation of the Robbins-Monro stochastic approximation algorithm for estimating ALAAM parameters, and functions for simulation and goodness-of-fit tests.

The ALAAM is a social influence model. Parameters of the model are estimated that maximize the likelihood of an observed binary outcome for each node, given a social network and nodal attributes, allowing the outcome on other nodes to influence a node's outcome.

This software is applicable to one-mode networks (directed or undirected), and undirected two-mode (bipartite) networks. It allows for estimation from network snowball samples (Stivala et al., 2020), and includes "geometrically weighted" statistics for avoiding near-degeneracy in larger networks (Stivala, 2023).

This Python implementation uses the NumPy library for vector and matrix data types and functions. In addition, there are R scripts for estimating standard errors and plotting results from the output.

Citing

If you use this software in your research, please cite:

Stivala, A., Wang, P., & Lomi, A. (2024). ALAAMEE: Open-source software for fitting autologistic actor attribute models. PLOS Complex Systems 1(4):e0000021. https://doi.org/10.1371/journal.pcsy.0000021

Other ALAAM software

  • For the original Windows GUI implementation using stochastic approximation, for one-mode, two-mode, and multilevel networks, MPNet.
  • For a Bayesian version handling missing data and sampled networks (Koskinen & Daraganova, 2022), implemented in R, https://github.com/johankoskinen/ALAAM

Funding

Development of the ALAAMEE software was funded by the Swiss National Science Foundation project numbers 167326 (NRP 75) and 200778.

References

Borisenko, A., Byshkin, M., & Lomi, A. (2019). A Simple Algorithm for Scalable Monte Carlo Inference. arXiv preprint arXiv:1901.00533. https://arxiv.org/abs/1901.00533

Byshkin, M., Stivala, A., Mira, A., Robins, G., & Lomi, A. (2018). Fast Maximum Likelihood Estimation via Equilibrium Expectation for Large Network Data. Scientific Reports 8:11509. https://doi.org/10.1038/s41598-018-29725-8

Daraganova, G., & Robins, G. (2013). Autologistic actor attribute models. In D. Lusher, J. Koskinen, and G. Robins, editors, Exponential Random Graph Models for Social Networks, chapter 9, pages 102-114. Cambridge University Press, New York.

Koskinen, J., & Daraganova, G. (2022). Bayesian analysis of social influence. Journal of the Royal Statistical Society Series A. 185(4), 1855-1881. https://doi.org/10.1111/rssa.12844

Parker, A., Pallotti, F., & Lomi, A. (2022). New network models for the analysis of social contagion in organizations: an introduction to autologistic actor attribute models. Organizational Research Methods, 25(3), 513–540. https://doi.org/10.1177/10944281211005167

Robins, G., Pattison, P., & Elliott, P. (2001). Network models for social influence processes. Psychometrika, 66(2), 161-189. https://link.springer.com/article/10.1007/BF02294834

Snijders, T. A. B. (2002). Markov chain Monte Carlo estimation of exponential random graph models. Journal of Social Structure, 3(2), 1-40.

Stivala, A. (2023). Overcoming near-degeneracy in the autologistic actor attribute model. arXiv preprint arXiv:2309.07338. https://arxiv.org/abs/2309.07338

Stivala, A. D., Gallagher, H. C., Rolls, D. A., Wang, P., & Robins, G. L. (2020). Using Sampled Network Data With The Autologistic Actor Attribute Model. arXiv preprint arXiv:2002.00849. https://arxiv.org/abs/2002.00849

Stivala, A., Robins, G., & Lomi, A. (2020). Exponential random graph model parameter estimation for very large directed networks. PloS ONE, 15(1), e0227804. https://arxiv.org/abs/1904.08063

Stivala, A., Wang, P., & Lomi, A. (2024). ALAAMEE: Open-source software for fitting autologistic actor attribute models. PLOS Complex Systems 1(4):e0000021. https://doi.org/10.1371/journal.pcsy.0000021

Wang, P., Robins, G., & Pattison, P. (2009). PNet: A program for the simulation and estimation of exponential random graph models. University of Melbourne. http://www.melnet.org.au/s/PNetManual.pdf

Wang, P., Robins, G., Pattison, P., & Koskinen, J. (2014). MPNet: A program for the simulation and estimation of exponential random graph models for multilevel networks. University of Melbourne. http://www.melnet.org.au/s/MPNetManual.pdf

Wang, P., Stivala, A., Robins, G.,Pattison, P., Koskinen, J., & Lomi, A. (2022) PNet: Program for the simulation and estimation of exponential random graph models for multilevel networks. http://www.melnet.org.au/s/MPNetManual2022.pdf