Skip to content

TensorFlow code to perform end-to-end Optical Music Recognition on monophonic scores through Convolutional Recurrent Neural Networks and CTC-based training.

License

Notifications You must be signed in to change notification settings

strongman22255/tf-end-to-end

 
 

Repository files navigation

tf-deep-omr

TensorFlow code to perform end-to-end Optical Music Recognition on monophonic scores through Convolutional Recurrent Neural Networks and CTC-based training.

Citation

This repository was used for the experiments reported in the paper:

End-to-End Neural Optical Music Recognition of Monophonic Scores

@Article{Calvo-Zaragoza2018,
  AUTHOR = {Calvo-Zaragoza, Jorge and Rizo, David},
  TITLE = {End-to-End Neural Optical Music Recognition of Monophonic Scores},
  JOURNAL = {Applied Sciences},
  VOLUME = {8},
  YEAR = {2018},
  NUMBER = {4},
  ARTICLE NUMBER = {606},
  URL = {http://www.mdpi.com/2076-3417/8/4/606},
  ISSN = {2076-3417},
  DOI = {10.3390/app8040606}
}

Corpora

This repository is intended for the Printed Images of Music Staves (PrIMuS) dataset.

PrIMuS can be donwloaded from https://grfia.dlsi.ua.es/primus/

Training

Assuming that PrIMuS dataset has been downloaded, and all its samples has been placed in the same folder, the training of the models can be done with ctc_training.py. It is necessary to build a list of training samples and the set of symbols (vocabulary). Examples of these files are given in Datafolder.

Semantic

python ctc_training.py -semantic -corpus <path_to_PrIMuS> -set Data/train.txt -vocabulary Data/vocabulary_semantic.txt  -save_model ./trained_semantic_model

Agnostic

python ctc_training.py -corpus <path_to_PrIMuS> -set Data/train.txt -vocabulary Data/vocabulary_agnostic.txt -save_model ./trained_agnostic_model

Recognition

For running inference over an input image, ctc_predict.py can be used, along with an input image, a trained model, and the corresponding vocabulary file.

The repository is not provided with trained models but these can be download from:

These models were the result of the traning process for one of the folds of the 10-fold cross-validation considered in the paper.

Let's see an example for the sample from PrIMuS provided in Data/Example:

Alt text

This sample belongs to the test set of the aforementioned fold, so it was not seen by the networks during their training stage.

Semantic

Running

python ctc_predict.py -image Data/Example/000051652-1_2_1.png -model Models/semantic_model.meta -vocabulary Data/vocabulary_semantic.txt

should get the following prediction

clef-C1 keySignature-EbM timeSignature-2/4 multirest-23 barline rest-quarter rest-eighth note-Bb4_eighth barline note-Bb4_quarter. note-G4_eighth barline note-Eb5_quarter. note-D5_eighth barline note-C5_eighth note-C5_eighth rest-quarter barline

The ground-truth of this example is given in Data/Example/000051652-1_2_1.semantic:

clef-C1 keySignature-EbM timeSignature-2/4 multirest-23 barline rest-quarter rest-eighth note-Bb4_eighth barline note-Bb4_quarter. note-G4_eighth barline note-Eb5_quarter. note-D5_eighth barline note-C5_eighth note-C5_eighth rest-quarter barline

It can be observed that the staff section is perfectly recognized by the model.

Agnostic

Running

python ctc_predict.py -image Data/Example/000051652-1_2_1.png -model Models/agnostic_model.meta -vocabulary Data/vocabulary_agnostic.txt

should get the following prediction

clef.C-L1 accidental.flat-L4 accidental.flat-L2 accidental.flat-S3 digit.2-L4 digit.4-L2 digit.2-S5 digit.3-S5 multirest-L3 barline-L1 rest.quarter-L3 rest.eighth-L3 note.eighth-L4 barline-L1 note.quarter-L4 dot-S4 note.eighth-L3 barline-L1 note.quarter-S5 dot-S5 note.eighth-L5 barline-L1 note.eighth-S4 note.eighth-S4 rest.quarter-L3

The ground-truth of this example is given in Data/Example/000051652-1_2_1.agnostic:

clef.C-L1 accidental.flat-L4 accidental.flat-L2 accidental.flat-S3 digit.2-L4 digit.4-L2 digit.2-S5 digit.3-S5 multirest-L3 barline-L1 rest.quarter-L3 rest.eighth-L3 note.eighth-L4 barline-L1 note.quarter-L4 dot-S4 note.eighth-L3 barline-L1 note.quarter-S5 dot-S5 note.eighth-L5 barline-L1 note.eighth-S4 note.eighth-S4 rest.quarter-L3 barline-L1

As discussed in the paper, this representation often misses the last barline.

Contact:

About

TensorFlow code to perform end-to-end Optical Music Recognition on monophonic scores through Convolutional Recurrent Neural Networks and CTC-based training.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%