Skip to content

tallamohan/dbt-teradata

 
 

Repository files navigation

dbt-teradata

The dbt Teradata adapter lets you use dbt with Teradata Vantage.

NOTE: This adapter is maintained by Teradata. We are accelerating our release cadence. Starting October 1st, 2023, we will release dbt-teradata within 4 weeks of a minor release or within 8 weeks of a major release of dbt-core.

Installation

pip install dbt-teradata

If you are new to dbt on Teradata see dbt with Teradata Vantage tutorial.

NOTE: If the virtual environment in Python is not activating properly on Windows, you can try running the below command in the command-line interface (CLI) before attempting to activate the virtual environment.

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUse

Sample profile

Here is a working example of a dbt-teradata profile:

my-teradata-db-profile:
  target: dev
  outputs:
    dev:
      type: teradata
      host: localhost
      user: dbc
      password: dbc
      schema: dbt_test
      tmode: ANSI

At a minimum, you need to specify host, user, password, schema (database), tmode.

Python compatibility

Plugin version Python 3.6 Python 3.7 Python 3.8 Python 3.9 Python 3.10 Python 3.11
0.19.0.x
0.20.0.x
0.21.1.x
1.0.0.x
1.1.x.x
1.2.x.x
1.3.x.x
1.4.x.x
1.5.x
1.6.x
1.7.x

dbt dependent packages version compatibility

dbt-teradata dbt-core dbt-teradata-util dbt-util
1.2.x 1.2.x 0.1.0 0.9.x or below
1.6.7 1.6.7 1.1.1 1.1.1
1.7.x 1.7.x 1.1.1 1.1.1

Optional profile configurations

Logmech

The logon mechanism for Teradata jobs that dbt executes can be configured with the logmech configuration in your Teradata profile. The logmech field can be set to: TD2, LDAP, KRB5, TDNEGO. For more information on authentication options, go to Teradata Vantage authentication documentation.

my-teradata-db-profile:
  target: dev
  outputs:
    dev:
      type: teradata
      host: <host>
      user: <user>
      password: <password>
      schema: dbt_test
      tmode: ANSI
      logmech: LDAP

Logdata

The logon mechanism for Teradata jobs that dbt executes can be configured with the logdata configuration in your Teradata profile. Addtional data like secure token, distinguished Name, or a domain/realm name can be set in your Teradata profile using logdata. The logdata field can be set to: JWT, LDAP, KRB5, TDNEGO. logdata is not used with the TD2 mechanism.

my-teradata-db-profile:
  target: dev
  outputs:
    dev:
      type: teradata
      host: <host>
      schema: dbt_test
      tmode: ANSI
      logmech: LDAP
      logdata: 'authcid=username password=password'
      port: <port>

For more information on authentication options, go to Teradata Vantage authentication documentation

Stored Password Protection

Stored Password Protection enables an application to provide a connection password in encrypted form to the driver. The plugin supports Stored Password Protection feature through prefix ENCRYPTED_PASSWORD( either in password connection parameter or in logdata connection parameter.

  • password
my-teradata-db-profile:
  target: dev
  outputs:
    dev:
      type: teradata
      host: <host>
      user: <user>
      password: ENCRYPTED_PASSWORD(file:PasswordEncryptionKeyFileName,file:EncryptedPasswordFileName)
      schema: dbt_test
      tmode: ANSI
      port: <port>
  • logdata
my-teradata-db-profile:
  target: dev
  outputs:
    dev:
      type: teradata
      host: <host>
      schema: dbt_test
      tmode: ANSI
      logmech: LDAP
      logdata: 'authcid=username password=ENCRYPTED_PASSWORD(file:PasswordEncryptionKeyFileName,file:EncryptedPasswordFileName)'
      port: <port>

For full description of Stored Password Protection see https://github.com/Teradata/python-driver#StoredPasswordProtection.

Port

If your Teradata database runs on port different than the default (1025), you can specify a custom port in your dbt profile using port configuration.

my-teradata-db-profile:
  target: dev
  outputs:
    dev:
      type: teradata
      host: <host>
      user: <user>
      password: <password>
      schema: dbt_test
      tmode: ANSI
      port: <port>

Retries

Allows an adapter to automatically try again when the attempt to open a new connection on the database has a transient, infrequent error. This option can be set using the retries configuration. Default value is 0. The default wait period between connection attempts is one second. retry_timeout (seconds) option allows us to adjust this waiting period.

If retries is set to 3, the adapter will try to establish a new connection three times if an error occurs.

my-teradata-db-profile:
  target: dev
  outputs:
    dev:
      type: teradata
      host: <host>
      user: <user>
      password: <password>
      schema: dbt_test
      tmode: ANSI
      retries: 3
      retry_timeout: 10

Other Teradata connection parameters

The plugin also supports the following Teradata connection parameters:

  • account
  • column_name
  • cop
  • coplast
  • encryptdata
  • fake_result_sets
  • field_quote
  • field_sep
  • lob_support
  • log
  • logdata
  • max_message_body
  • partition
  • sip_support
  • teradata_values
  • sslmode
  • sslca
  • sslcapath
  • sslcrc
  • sslcipher
  • sslprotocol
  • browser
  • browser_tab_timeout
  • browser_timeout
  • sp_spl
  • sessions
  • runstartup
  • logon_timeout
  • https_port
  • connect_timeout
  • request_timeout

For full description of the connection parameters see https://github.com/Teradata/python-driver#connection-parameters.

Supported Features

Materializations

  • view
  • table
  • ephemeral
  • incremental

Incremental Materialization

The following incremental materialization strategies are supported:

  • append (default)
  • delete+insert
  • merge

To learn more about dbt incremental strategies please check the dbt incremental strategy documentation.

Commands

All dbt commands are supported.

Custom configurations

General

  • Enable view column types in docs - Teradata Vantage has a dbscontrol configuration flag called DisableQVCI (QVCI - Queryable View Column Index). This flag instructs the database to build DBC.ColumnsJQV with view column type definitions.

    ℹ️ Existing customers, please see KB0022230 for more information about enabling QVCI.

    To enable this functionality you need to:

    1. Enable QVCI mode in Vantage. Use dbscontrol utility and then restart Teradata. Run these commands as a privileged user on a Teradata node:
      # option 551 is DisableQVCI. Setting it to false enables QVCI.
      dbscontrol << EOF
      M internal 551=false
      W
      EOF
      
      # restart Teradata
      tpareset -y Enable QVCI
    2. Instruct dbt to use QVCI mode. Include the following variable in your dbt_project.yml:
      vars:
        use_qvci: true
      For example configuration, see test/catalog/with_qvci/dbt_project.yml.

Models

Table

The following options apply to table, snapshots and seed materializations.

  • table_kind - define the table kind. Legal values are MULTISET (default for ANSI transaction mode required by dbt-teradata) and SET, e.g.:

    • in sql materialization definition file:
      {{
        config(
            materialized="table",
            table_kind="SET"
        )
      }}
    • in seed configuration:
      seeds:
        <project-name>:
          table_kind: "SET"

    For details, see CREATE TABLE documentation.

  • table_option - define table options. Legal values are:

    { MAP = map_name [COLOCATE USING colocation_name] |
      [NO] FALLBACK [PROTECTION] |
      WITH JOURNAL TABLE = table_specification |
      [NO] LOG |
      [ NO | DUAL ] [BEFORE] JOURNAL |
      [ NO | DUAL | LOCAL | NOT LOCAL ] AFTER JOURNAL |
      CHECKSUM = { DEFAULT | ON | OFF } |
      FREESPACE = integer [PERCENT] |
      mergeblockratio |
      datablocksize |
      blockcompression |
      isolated_loading
    }

    where:

    • mergeblockratio:
      { DEFAULT MERGEBLOCKRATIO |
        MERGEBLOCKRATIO = integer [PERCENT] |
        NO MERGEBLOCKRATIO
      }
    • datablocksize:
      DATABLOCKSIZE = {
        data_block_size [ BYTES | KBYTES | KILOBYTES ] |
        { MINIMUM | MAXIMUM | DEFAULT } DATABLOCKSIZE
      }
    • blockcompression:
      BLOCKCOMPRESSION = { AUTOTEMP | MANUAL | ALWAYS | NEVER | DEFAULT }
        [, BLOCKCOMPRESSIONALGORITHM = { ZLIB | ELZS_H | DEFAULT } ]
        [, BLOCKCOMPRESSIONLEVEL = { value | DEFAULT } ]
    • isolated_loading:
      WITH [NO] [CONCURRENT] ISOLATED LOADING [ FOR { ALL | INSERT | NONE } ]

    Examples:

    • in sql materialization definition file:
      {{
        config(
            materialized="table",
            table_option="NO FALLBACK"
        )
      }}
      {{
        config(
            materialized="table",
            table_option="NO FALLBACK, NO JOURNAL"
        )
      }}
      {{
        config(
            materialized="table",
            table_option="NO FALLBACK, NO JOURNAL, CHECKSUM = ON,
              NO MERGEBLOCKRATIO,
              WITH CONCURRENT ISOLATED LOADING FOR ALL"
        )
      }}
    • in seed configuration:
      seeds:
        <project-name>:
          table_option:"NO FALLBACK"
      seeds:
        <project-name>:
          table_option:"NO FALLBACK, NO JOURNAL"
      seeds:
        <project-name>:
          table_option: "NO FALLBACK, NO JOURNAL, CHECKSUM = ON,
            NO MERGEBLOCKRATIO,
            WITH CONCURRENT ISOLATED LOADING FOR ALL"

    For details, see CREATE TABLE documentation.

  • with_statistics - should statistics be copied from the base table, e.g.:

    {{
      config(
          materialized="table",
          with_statistics="true"
      )
    }}

    This option is not available for seeds as seeds do not use CREATE TABLE ... AS syntax.

    For details, see CREATE TABLE documentation.

  • index - defines table indices:

    [UNIQUE] PRIMARY INDEX [index_name] ( index_column_name [,...] ) |
    NO PRIMARY INDEX |
    PRIMARY AMP [INDEX] [index_name] ( index_column_name [,...] ) |
    PARTITION BY { partitioning_level | ( partitioning_level [,...] ) } |
    UNIQUE INDEX [ index_name ] [ ( index_column_name [,...] ) ] [loading] |
    INDEX [index_name] [ALL] ( index_column_name [,...] ) [ordering] [loading]
    [,...]

    where:

    • partitioning_level:
      { partitioning_expression |
        COLUMN [ [NO] AUTO COMPRESS |
        COLUMN [ [NO] AUTO COMPRESS ] [ ALL BUT ] column_partition ]
      } [ ADD constant ]
    • ordering:
      ORDER BY [ VALUES | HASH ] [ ( order_column_name ) ]
    • loading:
      WITH [NO] LOAD IDENTITY

    e.g.:

    • in sql materialization definition file:
      {{
        config(
            materialized="table",
            index="UNIQUE PRIMARY INDEX ( GlobalID )"
        )
      }}

      ℹ️ Note, unlike in table_option, there are no commas between index statements!

      {{
        config(
            materialized="table",
            index="PRIMARY INDEX(id)
            PARTITION BY RANGE_N(create_date
                          BETWEEN DATE '2020-01-01'
                          AND     DATE '2021-01-01'
                          EACH INTERVAL '1' MONTH)"
        )
      }}
      {{
        config(
            materialized="table",
            index="PRIMARY INDEX(id)
            PARTITION BY RANGE_N(create_date
                          BETWEEN DATE '2020-01-01'
                          AND     DATE '2021-01-01'
                          EACH INTERVAL '1' MONTH)
            INDEX index_attrA (attrA) WITH LOAD IDENTITY"
        )
      }}
    • in seed configuration:
      seeds:
        <project-name>:
          index: "UNIQUE PRIMARY INDEX ( GlobalID )"

      ℹ️ Note, unlike in table_option, there are no commas between index statements!

      seeds:
        <project-name>:
          index: "PRIMARY INDEX(id)
            PARTITION BY RANGE_N(create_date
                          BETWEEN DATE '2020-01-01'
                          AND     DATE '2021-01-01'
                          EACH INTERVAL '1' MONTH)"
      seeds:
        <project-name>:
          index: "PRIMARY INDEX(id)
            PARTITION BY RANGE_N(create_date
                          BETWEEN DATE '2020-01-01'
                          AND     DATE '2021-01-01'
                          EACH INTERVAL '1' MONTH)
            INDEX index_attrA (attrA) WITH LOAD IDENTITY"

Seeds

Seeds, in addition to the above materialization modifiers, have the following options:

  • use_fastload - use fastload when handling dbt seed command. The option will likely speed up loading when your seed files have hundreds of thousands of rows. You can set this seed configuration option in your project.yml file, e.g.:
    seeds:
      <project-name>:
        +use_fastload: true

Grants

Grants are supported in dbt-teradata adapter with release version 1.2.0 and above. You can use grants to manage access to the datasets you're producing with dbt. To implement these permissions, define grants as resource configs on each model, seed, or snapshot. Define the default grants that apply to the entire project in your dbt_project.yml, and define model-specific grants within each model's SQL or YAML file.

for e.g. : models/schema.yml

models:
  - name: model_name
    config:
      grants:
        select: ['user_a', 'user_b']

Another e.g. for adding multiple grants:

models:
- name: model_name
  config:
    materialized: table
    grants:
      select: ["user_b"]
      insert: ["user_c"]

ℹ️ copy_grants is not supported in Teradata.

More on Grants can be found at https://docs.getdbt.com/reference/resource-configs/grants

Cross DB macros

Starting with release 1.3, some macros were migrated from teradata-dbt-utils dbt package to the connector. See the table below for the macros supported from the connector.

For using cross DB macros, teradata-utils as a macro namespace will not be used, as cross DB macros have been migrated from teradata-utils to Dbt-Teradata.

Compatibility

Macro Group Macro Name Status Comment
Cross-database macros current_timestamp custom macro provided
Cross-database macros dateadd custom macro provided
Cross-database macros datediff custom macro provided, see compatibility note
Cross-database macros split_part custom macro provided
Cross-database macros date_trunc custom macro provided
Cross-database macros hash custom macro provided, see compatibility note
Cross-database macros replace custom macro provided
Cross-database macros type_string custom macro provided
Cross-database macros last_day no customization needed, see compatibility note
Cross-database macros width_bucket no customization
SQL generators generate_series custom macro provided
SQL generators date_spine no customization

examples for cross DB macros

Replace: {{ dbt.replace("string_text_column", "old_chars", "new_chars") }} {{ replace('abcgef', 'g', 'd') }}

Date truncate: {{ dbt.date_trunc("date_part", "date") }} {{ dbt.date_trunc("DD", "'2018-01-05 12:00:00'") }}

datediff

datediff macro in teradata supports difference between dates. Differece between timestamps is not supported.

hash

Hash macro needs an md5 function implementation. Teradata doesn't support md5 natively. You need to install a User Defined Function (UDF):

  1. Download the md5 UDF implementation from Teradata (registration required): https://downloads.teradata.com/download/extensibility/md5-message-digest-udf.
  2. Unzip the package and go to src directory.
  3. Start up bteq and connect to your database.
  4. Create database GLOBAL_FUNCTIONS that will host the UDF. You can't change the database name as it's hardcoded in the macro:
    CREATE DATABASE GLOBAL_FUNCTIONS AS PERMANENT = 60e6, SPOOL = 120e6;
  5. Create the UDF. Replace <CURRENT_USER> with your current database user:
    GRANT CREATE FUNCTION ON GLOBAL_FUNCTIONS TO <CURRENT_USER>;
    DATABASE GLOBAL_FUNCTIONS;
    .run file = hash_md5.btq
  6. Grant permissions to run the UDF with grant option.
    GRANT EXECUTE FUNCTION ON GLOBAL_FUNCTIONS TO PUBLIC WITH GRANT OPTION;

last_day

last_day in teradata_utils, unlike the corresponding macro in dbt_utils, doesn't support quarter datepart.

Common Teradata-specific tasks

  • collect statistics - when a table is created or modified significantly, there might be a need to tell Teradata to collect statistics for the optimizer. It can be done using COLLECT STATISTICS command. You can perform this step using dbt's post-hooks, e.g.:
    {{ config(
      post_hook=[
        "COLLECT STATISTICS ON  {{ this }} COLUMN (column_1,  column_2  ...);"
        ]
    )}}
    See Collecting Statistics documentation for more information.

Support for model contracts

Model contracts are supported with dbt-teradata v1.7.1 and onwards. Constraint support and enforcement in dbt-teradata

Constraint type Support Platform enforcement
not_null ✅ Supported ✅ Enforced
primary_key ✅ Supported ✅ Enforced
foreign_key ✅ Supported ✅ Enforced
unique ✅ Supported ✅ Enforced
check ✅ Supported ✅ Enforced

To find more on model contracts please follow dbt documentations https://docs.getdbt.com/docs/collaborate/govern/model-contracts

Support for dbt-utils package

dbt-utils package is supported through teradata/teradata_utils dbt package. The package provides a compatibility layer between dbt_utils and dbt-teradata. See teradata_utils package for install instructions.

Limitations

Transaction mode

Both ANSI and TERA modes are now supported in dbt-teradata. TERA mode's support is introduced with dbt-teradata 1.7.1, it is an initial implementation.

IMPORTANT NOTE: This is an initial implementation of the TERA transaction mode and may not support some use cases. We strongly advise validating all records or transformations utilizing this mode to preempt any potential anomalies or errors

Credits

The adapter was originally created by Doug Beatty. Teradata took over the adapter in January 2022. We are grateful to Doug for founding the project and accelerating the integration of dbt + Teradata.

License

The adapter is published using Apache-2.0 License. Please see the license for terms and conditions, such as creating derivative work and the support model.

About

dbt adapter for Teradata

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 94.3%
  • C 3.3%
  • Shell 2.1%
  • Dockerfile 0.3%