Skip to content

tamlthari/tiki_PostGreSQL_app

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tiki PostGreSQL

Crawl categories and products from tiki.vn, store in PostGres database and use Flask to query the data. Plus an analysis presentation embed in the Flask website. Heroku app and database is deployed at https://tiki-postgresql-app.herokuapp.com

Crawling data

  1. Prepare the database
    • Here we use python psycopg2 module to create connection to postgres
    • run Tiki_crawl_categories.ipynb to crawl categories on Tiki and store in categories table
    • run classProduct.ipynb to crawl products on Tiki and store in products table
    • Optionally we use multithreading with Python concurrent.futures ThreadPoolExecutor to speed up crawl time. When using multhreading, new connection to db has to be created and closed each access to the db because the connection cannot handle multiprocessing.
    • Product data include: product title, brand name, regular price, discount, final price, category, comments, number of ratings, TikiNOW availability, image, link
    • Database schema:
  2. Data analysis
    • Our analysis is in Analysis.ipynb
    • We perform category analysis, seller analysis and product analysis. We use seaborn to make charts.

Build Flask app

  1. Database connection
    • We use flask_sqlalchemy SQLAlchemy to create data class models and query
    • models.py creates the class data models and config.py contains configuration for our app
    • Database can be query in realtime by input URL path
  2. Start Flask app
    • On terminal run python app.py to start the Flask app

Using the Flask app

  1. Navigate using the URL
    • The URL path is used to input query to the app
    • /product/getid/[id] will query and return the product by id
    • /product/getseller/[seller] will query by seller and return all products from the seller ([seller] input is case sensitive), for example, /product/getseller/FORD will return all products by FORD
    • /product/getcategory/[categoryid] will query the products by the category id
    • /category/getid/[id] will return the category by id
  2. View Tiki analysis presentation
    • Tiki Analysis is embed at /presentation and can be viewed by going to /presentation or clicking on 'Go to Tiki analysis Slides' button

Push and deploy to Heroku

  1. Create app and push database to Heroku
    • Install heroku and login
    • Create environment virtualenv env then source env/bin/activate and install required python modules. (Flask, flask_script, flask_migrate, psycopg2-binary, gunicorn)
    • Create requirements.txt by pip freeze > requirements.txt
    • Create runtime.txt containing python-3.6.5
    • Create Procfile containg web: gunicorn app:app
    • Create app heroku create [app-name]
    • Create remote and ready to push git remote add prod https://git.heroku.com/tiki-postgresql-app.git
    • Config heroku heroku config:set APP_SETTINGS=config.ProductionConfig --remote prod
    • Create database remotely heroku addons:create heroku-postgresql:hobby-dev --app [app-name]
    • View configurations by heroku config --app [app-name]
    • push postgres db to remote PGUSER=postgres PGPASSWORD=password heroku pg:push postgresql://postgres:password@localhost:5432/[localdbname] DATABASE_URL --app [app-name] . The DATABASE_URL is the in heroku configurations in the previous remote db creation step
    • If pg_dump version mismatch upgrade postgres by brew upgrade postgresql
    • create file .env containing
    export APP_SETTINGS="config.DevelopmentConfig"
    export DATABASE_URL="[remoteDatabaseURL]"
    
    (also edit config.py DATABASE_URL to be remoteDatabaseURL)
    • run git init on the root folder that has not been git initialized
    • git commit -m "message here" then git push prod master
    • All done and go to heroku url to use app