Skip to content

Commit

Permalink
Merge branch 'devel'
Browse files Browse the repository at this point in the history
  • Loading branch information
rhandberg committed Dec 15, 2021
2 parents e52274d + 7b30aff commit 676a0b8
Show file tree
Hide file tree
Showing 7 changed files with 75 additions and 71 deletions.
2 changes: 1 addition & 1 deletion VERSION
Original file line number Diff line number Diff line change
@@ -1 +1 @@
master-v2.1
master-v2.1.1
19 changes: 12 additions & 7 deletions dataval/dataval.py
Original file line number Diff line number Diff line change
Expand Up @@ -472,13 +472,15 @@ def validate(self):
logger.info('--------------------------------------------------------')

#----------------------------------------------------------------------------------------------
def basic(self, warn_errors_ratio=0.05):
def basic(self, errors_ratio_warn=0.05, errors_ratio_err=0.10):
"""
Perform basic checks of the TODO-file and the lightcurve files.
Parameters:
warn_errors_ratio (float, optional): Fraction of photometry ERRORs to OK and WARNINGs
errors_ratio_warn (float, optional): Fraction of ERRORs to OK and WARNINGs
to warn about. Default=5%.
errors_ratio_err (float, optional): Fraction of ERRORs to OK and WARNINGs
to throw error about. Default=10%.
.. codeauthor:: Rasmus Handberg <[email protected]>
"""
Expand Down Expand Up @@ -528,8 +530,9 @@ def basic(self, warn_errors_ratio=0.05):
))
count_errors = self.cursor.fetchone()[0]
ratio = count_errors/(count_good + count_errors) if count_good + count_errors > 0 else 0
if ratio > warn_errors_ratio:
logger.warning(" CAMERA=%d, CCD=%d: High number of errors detected: %.2f%% (%d errors, %d good)",
if ratio > errors_ratio_warn or ratio > errors_ratio_err:
loglevel = logging.ERROR if ratio > errors_ratio_err else logging.WARNING
logger.log(loglevel, " CAMERA=%d, CCD=%d: High number of errors detected: %.2f%% (%d errors, %d good)",
camera, ccd, 100*ratio, count_errors, count_good)
else:
logger.info(" CAMERA=%d, CCD=%d: %.2f%% (%d errors, %d good)",
Expand Down Expand Up @@ -585,8 +588,9 @@ def basic(self, warn_errors_ratio=0.05):
))
count_errors = self.cursor.fetchone()[0]
ratio = count_errors/(count_good + count_errors) if count_good + count_errors > 0 else 0
if ratio > warn_errors_ratio:
logger.warning(" CAMERA=%d, CCD=%d: High number of errors detected: %.2f%% (%d errors, %d good)",
if ratio > errors_ratio_warn or ratio > errors_ratio_err:
loglevel = logging.ERROR if ratio > errors_ratio_err else logging.WARNING
logger.log(loglevel, " CAMERA=%d, CCD=%d: High number of errors detected: %.2f%% (%d errors, %d good)",
camera, ccd, 100*ratio, count_errors, count_good)
else:
logger.info(" CAMERA=%d, CCD=%d: %.2f%% (%d errors, %d good)",
Expand All @@ -606,7 +610,8 @@ def basic(self, warn_errors_ratio=0.05):
'FileNotFoundError',
'sqlite3.%',
'TargetNotFoundError', # custom "error" set in photometry.TaskManager.save_result
'TypeError'
'TypeError',
'Could not save lightcurve file'
]

logger.info("Checking for specific errors...")
Expand Down
17 changes: 12 additions & 5 deletions dataval/mag2flux.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,14 +27,20 @@ def mag2flux(dval):
logger = logging.getLogger('dataval')
logger.info('Plotting Magnitude to Flux conversion...')

zp_grid = np.linspace(19.0, 22.0, 100)
mags = np.linspace(dval.tmag_limits[0], dval.tmag_limits[1], 200)
# Get the maximum median flux to be used to set the plot limits:
max_mean_flux = dval.search_database(
select=['MAX(mean_flux) AS maxflux'],
search=["method_used='aperture'"])
max_mean_flux = max_mean_flux[0]['maxflux']

zp_grid = np.linspace(19.0, 22.0, 300)
mags = np.linspace(dval.tmag_limits[0], dval.tmag_limits[1], 300)

# The interpolation is linear *in log*
xmin = np.array([0, 1.5, 9, 12.6, 13, 14, 15, 16, 17, 18, 19])
ymin = np.array([8e7, 1.8e7, 12500, 250, 59, 5, 1, 1, 1, 1, 1])
min_bound_log = InterpolatedUnivariateSpline(xmin, np.log10(ymin), k=1, ext=3)
min_bound = lambda x: 10**(min_bound_log(x)) # noqa: E731
min_bound = lambda x: np.clip(10**(min_bound_log(x)), 1, None) # noqa: E731

norm = colors.Normalize(vmin=0, vmax=1)
fig2, ax2 = plt.subplots()
Expand Down Expand Up @@ -125,13 +131,14 @@ def chi2(c):
#ax31.plot(bin_centers2, 1.4826*3*bin_means2, color='g')

# Add line with best fit, and the minimim bound:
ax1.plot(mags, 10**(-0.4*(mags - cc.x)), color='k', ls='--')
ax1.plot(mags, np.clip(10**(-0.4*(mags - cc.x)), 0, None), color='k', ls='--')
ax1.plot(mags, min_bound(mags), 'r-')

ax1.set_yscale('log')
ax1.set_xlim(dval.tmag_limits[1], dval.tmag_limits[0])
ax1.set_ylim(0.5, 2*max_mean_flux)
ax1.set_xlabel('TESS magnitude')
ax1.set_ylabel('Median flux')
ax1.set_ylabel('Median flux (e$^-$/s)')
ax1.xaxis.set_major_locator(MultipleLocator(2))
ax1.xaxis.set_minor_locator(MultipleLocator(1))
colorbar(im, ax=ax1, label='Contamination')
Expand Down
47 changes: 22 additions & 25 deletions dataval/noise_metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,15 @@ def noise_metrics(dval):
logger = logging.getLogger('dataval')
logger.info('Plotting Noise vs. Magnitude...')

mags = np.linspace(dval.tmag_limits[0], dval.tmag_limits[1], 200)
table_noise = 'diagnostics_corr' if dval.corr else 'diagnostics'
factor = 1 if dval.corr else 1e6
max_vals = dval.search_database(select=[
'MAX(' + table_noise + '.rms_hour) AS max_rms',
'MAX(' + table_noise + '.ptp) AS max_ptp'])
max_rms = factor*max_vals[0]['max_rms']
max_ptp = factor*max_vals[0]['max_ptp']

mags = np.linspace(dval.tmag_limits[0], dval.tmag_limits[1], 300)

# Colors for theoretical lines:
# Define the colors directly here to avoid having to import
Expand All @@ -45,30 +53,16 @@ def noise_metrics(dval):

for cadence in dval.cadences:

if dval.corr:
factor = 1
star_vals = dval.search_database(
select=[
'todolist.priority',
'todolist.sector',
'todolist.tmag',
'diagnostics_corr.rms_hour',
'diagnostics_corr.ptp',
'diagnostics.contamination'
],
search=f'cadence={cadence:d}')
else:
factor = 1e6
star_vals = dval.search_database(
select=[
'todolist.priority',
'todolist.sector',
'todolist.tmag',
'diagnostics.rms_hour',
'diagnostics.ptp',
'diagnostics.contamination'
],
search=f'cadence={cadence:d}')
star_vals = dval.search_database(
select=[
'todolist.priority',
'todolist.sector',
'todolist.tmag',
table_noise + '.rms_hour',
table_noise + '.ptp',
'diagnostics.contamination'
],
search=f'cadence={cadence:d}')

tmags = np.array([star['tmag'] for star in star_vals], dtype='float64')
pri = np.array([star['priority'] for star in star_vals], dtype='int64')
Expand Down Expand Up @@ -130,6 +124,9 @@ def noise_metrics(dval):
axx.set_yscale('log')
#axx.legend(loc='upper left')

ax1.set_ylim(0.3*np.min(tot_noise_rms), 2*max_rms)
ax2.set_ylim(0.3*np.min(tot_noise_ptp), 2*max_ptp)

colorbar(im1, ax=ax1, label='Contamination')
colorbar(im2, ax=ax2, label='Contamination')

Expand Down
27 changes: 4 additions & 23 deletions dataval/noise_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
from astropy import units as u
from astropy.coordinates import SkyCoord
import scipy.interpolate as INT
from .utilities import mag2flux

#--------------------------------------------------------------------------------------------------
def ZLnoise(gal_lat):
Expand Down Expand Up @@ -55,28 +56,6 @@ def Pixinaperture(Tmag, cad=1800):

return np.asarray(np.maximum(pixels, 3), dtype='int32')

#--------------------------------------------------------------------------------------------------
def mean_flux_level(Tmag):
"""
Mean flux from TESS magnitude
.. codeauthor:: Mikkel N. Lund <[email protected]>
"""
# Magnitude system based on Sullivan et al.
#collecting_area = np.pi*(10.5/2)**2 # square cm
#Teff_list = np.array([2450, 3000, 3200, 3400, 3700, 4100, 4500, 5000, 5777, 6500, 7200, 9700]) # Based on Sullivan
#Flux_list = np.array([2.38, 1.43, 1.40, 1.38, 1.39, 1.41, 1.43, 1.45, 1.45, 1.48, 1.48, 1.56])*1e6 # photons per sec; Based on Sullivan
#Magn_list = np.array([306, -191, -202, -201, -174, -132, -101, -80, -69.5, -40, -34.1, 35])*1e-3 #Ic-Tmag (mmag)

#Flux_int = INT.UnivariateSpline(Teff_list, Flux_list, k=1, s=0)
#Magn_int = INT.UnivariateSpline(Teff_list, Magn_list, k=1, s=0)

#Imag = Magn_int(Teff)+Tmag
#Flux = 10**(-0.4*Imag) * Flux_int(Teff) * collecting_area

Flux = 10**(-0.4*(Tmag - 20.54))
return Flux

#--------------------------------------------------------------------------------------------------
def phot_noise(Tmag, timescale=3600, coord=None, sysnoise=60, Teff=5775, cadpix=1800):
"""
Expand Down Expand Up @@ -136,7 +115,7 @@ def phot_noise(Tmag, timescale=3600, coord=None, sysnoise=60, Teff=5775, cadpix=
Flux_factor = np.sqrt(integrations * pixels)

# Mean flux level in electrons per cadence
mean_level_ppm = mean_flux_level(Tmag) * timescale # electrons (based on measurement) #, Teff
mean_level_ppm = mag2flux(Tmag) * timescale # electrons (based on measurement) #, Teff

# Shot noise
shot_noise = 1e6/np.sqrt(mean_level_ppm)
Expand All @@ -152,8 +131,10 @@ def phot_noise(Tmag, timescale=3600, coord=None, sysnoise=60, Teff=5775, cadpix=

# Put individual components together in single table:
noise_vals = np.column_stack((shot_noise, zodiacal_noise, read_noise, systematic_noise))
noise_vals = np.clip(noise_vals, 0, None)

# Calculate the total noise model by adding up the individual contributions:
total_noise = np.sqrt(np.sum(noise_vals**2, axis=1))
total_noise = np.clip(total_noise, 0, None)

return total_noise, noise_vals # ppm per cadence
24 changes: 18 additions & 6 deletions dataval/pixinaperture.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,13 @@ def pixinaperture(dval):
logger = logging.getLogger('dataval')
logger.info('Plotting Pixels in aperture vs. Magnitude...')

mags = np.linspace(dval.tmag_limits[0], dval.tmag_limits[1], 200)
mags = np.linspace(dval.tmag_limits[0], dval.tmag_limits[1], 500)

# Find the maximim mask size, used as a constant upper limit on the plots:
max_masksize = dval.search_database(
select=['MAX(diagnostics.mask_size) AS maxsize'],
search=["method_used='aperture'", 'diagnostics.mask_size IS NOT NULL'])
max_masksize = max_masksize[0]['maxsize']

# TODO: Does this need to be separated by cadence as well?
# Are there significant differences beween 120s and 20s mask sizes?
Expand Down Expand Up @@ -130,26 +136,33 @@ def pixinaperture(dval):

# The interpolations are linear *in log space* which is the reason
# for the stange lambda wrappers in the following code:
# Rounding to 13 decimal places is to avoid numerical noise causing single pixel jumps
if datasource == 'ffi':
# Minimum bound on FFI data:
xmin = np.array([0, 2, 2.7, 3.55, 4.2, 4.8, 5.5, 6.8, 7.6, 8.4, 9.1, 10, 10.5, 11, 11.5, 11.6, 16])
ymin = np.array([30, 30, 30, 30, 29, 28, 27, 26, 25, 22, 20, 15, 11.15, 8, 5, 4, 4])
min_bound_log = InterpolatedUnivariateSpline(xmin, np.log10(ymin), k=1, ext=3)
min_bound = lambda x: np.floor(10**(min_bound_log(x))) # noqa: E731
min_bound = lambda x: np.clip(np.floor(np.round(10**(min_bound_log(x)), decimals=13)), 4, None) # noqa: E731

# Maximum bound on FFI data:
xmax = np.array([0, 2, 2.7, 3.55, 4.2, 4.8, 5.5, 6.8, 7.6, 8.4, 9.1, 10, 10.5, 11, 11.5, 12, 12.7, 13.3, 14, 14.5, 15, 16])
ymax = np.array([10000, 3200, 2400, 1400, 1200, 900, 800, 470, 260, 200, 170, 130, 120, 100, 94, 86, 76, 67, 59, 54, 50, 50])
max_bound_log = InterpolatedUnivariateSpline(xmax, np.log10(ymax), k=1, ext=3)
max_bound = lambda x: np.ceil(10**(max_bound_log(x))) # noqa: E731
max_bound = lambda x: np.ceil(np.round(10**(max_bound_log(x)), decimals=13)) # noqa: E731
else:
# Minimum bound on TPF data
xmin = np.array([0, 2, 2.7, 3.55, 4.2, 4.8, 5.5, 6.8, 7.6, 8.4, 9.1, 10, 10.5, 11, 11.5, 11.6, 16, 19])
ymin = np.array([220, 200, 130, 70, 55, 43, 36, 30, 27, 22, 16, 10, 8, 6, 5, 4, 4, 4])
min_bound_log = InterpolatedUnivariateSpline(xmin, np.log10(ymin), k=1, ext=3)
min_bound = lambda x: np.floor(10**(min_bound_log(x))) # noqa: E731
min_bound = lambda x: np.clip(np.floor(np.round(10**(min_bound_log(x)), decimals=13)), 4, None) # noqa: E731
max_bound = None

# Simple sanity check if the bounds are monotonical decresing:
if not np.all(np.diff(min_bound(mags)) <= 0):
raise RuntimeError("Minimum bound (" + datasource + ") is not monotonically decreasing") # pragma: no cover
if max_bound is not None and not np.all(np.diff(max_bound(mags)) <= 0):
raise RuntimeError("Maximum bound (" + datasource + ") is not monotonically decreasing") # pragma: no cover

# Plot limits:
ax1.plot(mags, min_bound(mags), 'r-')
if max_bound is not None:
Expand Down Expand Up @@ -208,8 +221,7 @@ def pixinaperture(dval):
#ax2.plot(mags, pix, color='k', ls='-')

ax1.set_xlim(dval.tmag_limits)
ax1.set_ylim([0.99, np.nanmax(masksizes)+500])

ax1.set_ylim([0.99, max_masksize+500])
ax1.set_xlabel('TESS magnitude')
ax1.set_ylabel('Pixels in aperture')
xtick_major = np.median(np.diff(ax1.get_xticks()))
Expand Down
10 changes: 6 additions & 4 deletions dataval/utilities.py
Original file line number Diff line number Diff line change
Expand Up @@ -221,18 +221,20 @@ def mad(x):
return mad_to_sigma * nanmedian(np.abs(x - nanmedian(x)))

#--------------------------------------------------------------------------------------------------
def mag2flux(mag, zp=20.60654144):
def mag2flux(mag, zp=20.451):
"""
Convert from magnitude to flux using scaling relation from
aperture photometry. This is an estimate.
The scaling is based on fast-track TESS data from sectors 1 and 2.
The default scaling is based on TASOC Data Release 5 from sectors 1-5.
Parameters:
mag (float): Magnitude in TESS band.
mag (ndarray): Magnitude in TESS band.
zp (float): Zero-point to use in scaling. Default is estimated from
TASOC Data Release 5 from TESS sectors 1-5.
Returns:
float: Corresponding flux value
ndarray: Corresponding flux value
"""
return np.clip(10**(-0.4*(mag - zp)), 0, None)

Expand Down

0 comments on commit 676a0b8

Please sign in to comment.