-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
126 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
# 泛函分析 | ||
|
||
## 常见空间 | ||
|
||
### $l_p$ 空间 {#countable-lp-norm} | ||
|
||
$l_p$ 空间的定义: | ||
|
||
$$ | ||
l_p = \left\{\mathbf{x} = (x_1, x_2, \ldots) \left| \sum_{i=1}^{\infty} \left| x_i \right|^p < \infty\right.\right\} | ||
$$ | ||
|
||
### $L^p$ 空间 {#lp-space} | ||
|
||
$L^p$ 空间的定义: | ||
|
||
$$ | ||
\mathcal{L}ƒ^p(X,\mu) = \left\{f: X \to \mathbb{R} \left| \int_X \left| f(x) \right|^p \mathrm{d}x < \infty\right.\right\} | ||
$$ | ||
|
||
???+ note "等价关系" | ||
|
||
严格来说,上面的定义并不是 $L^p(X,\mu)$, 而是 $\mathcal{L}^p(X,\mu)$, 因为 $\lVert \cdot \rVert_p$ 只构成一个半范数,而不是范数。采取一个较为标准的拓扑方法,只需要考虑 $\mathcal{L}^p(X,\mu)$ 满足 $\lVert f \rVert_p = 0$ 的全部函数: | ||
|
||
$$ | ||
N = \left\{f: X \to \mathbb{R} \left| \int_X \left| f(x) \right|^p \mathrm{d}x = 0\right.\right\} | ||
$$ | ||
|
||
即 $f \rightarrow \lVert f \rVert_p$ 的零空间。对于可测函数来说 $\lVert f\rVert_p = 0 \Leftrightarrow \mu \left(f\neq 0\right) = 0$. 只需要将 $L_p(X,\mu)$ 定义为 $\mathcal{L}^p(X,\mu)/N$ 即可。 | ||
|
||
## Fubini / Tonelli 定理 | ||
|
||
- Fubini 定理:考虑 $f(x,y)$ 在 $X\times Y$ 的一个矩形区域上 Lebesgue 可积,即 | ||
|
||
$$ | ||
\int_{X\times Y} \left| f(x,y) \right| \mathrm{d}(x,y) < \infty | ||
$$ | ||
|
||
那么: | ||
|
||
$$ | ||
\int_{X\times Y} f(x,y) \mathrm{d}(x,y) = \int_X \left(\int_Y f(x,y) \mathrm{d}y\right) \mathrm{d}x = \int_Y \left(\int_X f(x,y) \mathrm{d}x\right) \mathrm{d}y | ||
$$ | ||
|
||
- Tonelli 定理:考虑 $f(x,y)$ 在 $X\times Y$ 的一个矩形区域上非负可测,即:$f: X\times Y \to [0, \infty]$, 那么: | ||
|
||
$$ | ||
\int_{X\times Y} f(x,y) \mathrm{d}x\mathrm{d}y = \int_X \left(\int_Y f(x,y) \mathrm{d}y\right) \mathrm{d}x = \int_Y \left(\int_X f(x,y) \mathrm{d}x\right) \mathrm{d}y | ||
$$ | ||
|
||
## 卷积 Convolution | ||
|
||
### 定义 | ||
|
||
- 连续情况: | ||
|
||
考虑 $L^1$ 上的两个函数 $f(x)$ 和 $g(x)$,它们的卷积定义为: | ||
|
||
$$ | ||
(f * g)(x) = \int_{-\infty}^{\infty} f(x - t) g(t) \mathrm{d} t | ||
$$ | ||
|
||
!!! note "" | ||
|
||
考虑定义域限制 $f, g: [0,\infty) \to \mathbb{R}$,则卷积操作变为: | ||
|
||
$$ | ||
(f * g)(x) = \int_{0}^{x} f(x - t) g(t) \mathrm{d}t | ||
$$ | ||
|
||
> 实际上是上面定义的自然推广,只需补充 $f, g: (-\infty,0) \to \{0\}$ 即可。 | ||
|
||
一般的,对于 $L^1\left(\mathbb{R}^n\right)$ 上的函数,卷积定义为: | ||
|
||
$$ | ||
(f * g)(\mathbf{x}) = \int_{\mathbb{R}^n} f(\mathbf{x} - \mathbf{t}) g(\mathbf{t}) \mathrm{d}\mathbf{t} | ||
$$ | ||
|
||
- 离散情况: | ||
|
||
考虑 $l^1$ 上的两个序列 $\{f_n\}$ 和 $\{g_n\}$,它们的卷积定义为: | ||
|
||
$$ | ||
(f * g)_n = \sum_{k=-\infty}^{\infty} f_{n-k} \cdot g_k | ||
$$ | ||
|
||
### 性质 | ||
|
||
- 交换性,即 $(f * g)(x) = (g * f)(x)$ | ||
|
||
- 对 $f, g\in L^1\left(\mathbb{R}^n\right)$, $f*g$ 存在,而且 $f*g \in L^1\left(\mathbb{R}^n\right)$ | ||
|
||
- 更一般的, $f\in L^1\left(\mathbb{R}^n\right)$, $g\in L^p\left(\mathbb{R}^n\right)$, $1\leq p\leq \infty$, 则 $f*g \in L^p\left(\mathbb{R}^n\right)$, 且有: | ||
|
||
$$ | ||
\left\| f*g \right\|_p \leq \left\| f \right\|_1 \left\| g \right\|_p | ||
$$ | ||
|
||
- 与 Fourier 变换 之间的联系: | ||
|
||
$$ | ||
\mathcal{F}\left[f*g\right] = \mathcal{F}\left[f\right] \cdot \mathcal{F}\left[g\right] | ||
$$ | ||
|
||
- 微分/积分特性,下面 $h = f * g$ | ||
|
||
$$ | ||
h'(t) = \left(f * g\right)'(t) = f'(t) * g(t) = f(t) * g'(t) | ||
$$ | ||
|
||
$$ | ||
\int_{-\infty}^{\infty} h(t) \mathrm{d}t = \left(\int_{-\infty}^{\infty} f(t) \mathrm{d}t\right) * g(t) = f(t) * \left(\int_{-\infty}^{\infty} g(t) \mathrm{d}t\right) | ||
$$ | ||
|
||
$$ | ||
h(t) = f'(t) * \left(\int_{-\infty}^{\infty} g(t) \mathrm{d}t\right) = \left(\int_{-\infty}^{\infty} f(t) \mathrm{d}t\right) * g'(t) | ||
$$ | ||
|
||
- 特别的,考虑 $\delta (t)$: | ||
|
||
- $f(t) * \delta(t) = f(t)$ | ||
- $f(t) * \delta(t - t_0) = f(t - t_0)$ | ||
- $f(t) * \delta'(t) = f'(t) * \delta(t) = f'(t)$ | ||
- $f(t) * \delta^{(n)}(t) = f^{(n)}(t) * \delta(t) = f^{(n)}(t)$ | ||
- $\displaystyle f(t) * \int_{-\infty}^{t} \delta(t) \mathrm{d}t = \int_{-\infty}^{t} f(t) \mathrm{d}t = F(t)$ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters