-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
84 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
# Fourier 分析 | ||
|
||
## Parseval | ||
|
||
### $\zeta(2)$ | ||
|
||
考虑对 $f(x) = x$ 做 Fourier: | ||
|
||
$$ | ||
c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} x \cdot \mathrm{e}^{-i n x} \mathrm{d} x = \frac{(-1)^n}{n} i \quad \forall\ n\neq 0 | ||
$$ | ||
|
||
显然有$c_0 = 0$, 因此根据 Parseval: | ||
|
||
$$ | ||
\sum_{n=\infty}^{\infty} |c_n|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 \mathrm{d} x = \frac{\pi^2}{3} | ||
$$ | ||
|
||
因此 | ||
|
||
$$ | ||
\zeta(2) = \displaystyle\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} | ||
$$ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,61 @@ | ||
# 概率论 | ||
|
||
## Questions | ||
|
||
### 2024-09-06 两个数互素的概率 | ||
|
||
> Also see https://math.stackexchange.com/questions/64498/probability-that-two-random-numbers-are-coprime-is-frac6-pi2 | ||
> | ||
> 因为很有趣所以对照翻译一遍。 | ||
按照这样的思路考虑两个数互素 (_coprime_) 的概率: | ||
|
||
- 两个数都是 $2$ 的倍数的概率:$\frac{1}{4}$. | ||
- 两个数都是 $3$ 的倍数的概率:$\frac{1}{9}$. | ||
- $\cdots$ | ||
- 两个数都是 $p$ 的倍数的概率:$\frac{1}{p^2}$. | ||
|
||
所以两个数互素的概率是: | ||
|
||
$$ | ||
\prod_{p \in \text{prime}} \left(1-\frac{1}{p^2}\right) | ||
$$ | ||
|
||
接下来的处理方式是: | ||
|
||
$$ | ||
\prod_{p \in \text{prime}} \left(1-\frac{1}{p^2}\right) = \left(\prod_{p \in \text{prime}}\frac{1}{1-p^{-2}} \right)^{-1} | ||
$$ | ||
|
||
回顾 | ||
|
||
$$ | ||
\begin{aligned} | ||
\frac{1}{1-x} &= 1 + x + x^2 + \cdots \\ | ||
\frac{1}{1-p^{-2}} &= 1 + \frac{1}{p^2} + \frac{1}{p^4} + \cdots \\ | ||
\end{aligned} | ||
$$ | ||
|
||
因此有: | ||
|
||
$$ | ||
\prod_{p \in \text{prime}}\frac{1}{1-p^{-2}} = (1 + \frac{1}{2^2} + \frac{1}{2^4} + \cdots)\times (1 + \frac{1}{3^2} + \frac{1}{3^4} + \cdots) \times \cdots | ||
$$ | ||
|
||
注意到这实际上「组合」出了所有正整数,因为这样的映射是一一对应的: | ||
|
||
$$ | ||
x = p_1^{i_1} \cdot p_2^{i_2} \cdots p_n^{i_n} | ||
$$ | ||
|
||
其中 $p_i$ 是素数,$i_i$ 是非负整数。因此有: | ||
|
||
$$ | ||
\prod_{p \in \text{prime}}\frac{1}{1-p^{-2}} = \sum_{n=1}^{\infty} \frac{1}{n^2} = \zeta(2) = \frac {\pi^2}{6} | ||
$$ | ||
|
||
$\zeta(2)$ 的计算可以 [参考](/math/analysis/fourier/#zeta2), 原问题的答案是: | ||
|
||
$$ | ||
\left(\prod_{p \in \text{prime}}\frac{1}{1-p^{-2}} \right)^{-1} = \zeta(2)^{-1} = \frac{6}{\pi^2} | ||
$$ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters