-
Notifications
You must be signed in to change notification settings - Fork 292
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Bugfix for argsort
ordering.
#301
Open
xkszltl
wants to merge
1
commit into
trevorstephens:main
Choose a base branch
from
xkszltl:argsort
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Numpy uses quicksort by default, causing unit test failure when numpy 2.0 released possibly due to internal behavior change. We should always use stable sorting for deterministic behavior. This change also implies `numpy>=1.15.0` to support `kind`. Should be OK since that is from mid 2018 and the earliest supported python listed is 3.8 from late 2019. Some intermediate results: ``` fitness = [ 0.33974567 0.81895563 0.94070405 0.52993818 0.88379917 0.77904015 0.57553742 0.47380936 0.37427307 0.51682958 0.44839885 0.31961157 0.61859446 0.81008902 0.92151043 0.09568099 0.94070405 0.27372766 0.90532631 0.77971909 0. 0.35179379 0.67697571 0.75771999 0.38116613 0.72893838 0.66027406 0.94070405 0.94070405 0.57791134 0.81895563 0.6465814 0.61902008 0.78928374 0.77971909 0.33974567 0.928166 0.50965352 0.72893838 0.96131336 0.63307761 0.81008902 0.87809592 0.94070405 0.85015997 0.5519724 0.88508586 0.66670118 0.53261073 0.88464403 0.92151043 0.94070405 0.84466016 0.92151043 0.67346263 0.64351788 0.88046279 0.74943025 0.85015997 0.94070405 0.92251378 0.79115731 0.322811 0.94070405 0.8047925 0.86139315 0.88508586 0.94070405 0.69791616 0.93857883 0.89034748 0.23008709 0.8074698 0.67242776 0.27152052 0.94070405 0.92151043 0.24725724 0.88508586 0.8074698 0.46557846 0.70198849 0.51334045 0.53751801 0.83399953 0.74622591 0.78625696 0.94070405 0.44174531 0.88508586 0.57743352 0.94070405 0.28999104 0.37486687 0.84896842 0.92151043 0.09305982 0.8074698 0.06718238 0.61554918 0.40841508 0.88382682 0.92151043 0.90532631 0.84458929 0.07197116 0.03002106 0.89591207 0.77971909 0.57791134 0.76741657 0.82206575 0.94070405 0.91762347 0.86139315 0.77971909 0.37066566 0.82901212 0.94070405 0.51739491 0.94070405 0.83795664 0.20879317 0.84058307 0.62029227 0.04250433 0.88382682 0.64843241 0. 0.85015997 0.6218872 0.94070405 0.53976123 0.91762347 0.08466398 0.42431066 0.44839885 0.89641524 0.85706889 0.76292463 0.26448191 0. 0.60351109 0.7122769 0.62225002 0.72038895 0.85015997 0.94070405 0.94070405 0.12910986 0.88379917 0.94070405 0.5181633 0.88508586 0.94070405 0.92151043 0.92158215 0.4051425 0.53836192 0.60054088 0.77971909 0.44839885 0.88508586 0.56913785 0.44376123 0.94070405 0.38552886 0.88508586 0.88508586 0.88508586 0.94070405 0.09222356 0.8096277 0.92151043 0.81051991 0.02988189 0.90532631 0.28390354 0.77971909 0.29585511 0.37720316 0.8074698 0.85015997 0.38552886 0.8074698 0.76741657 0.77971909 0.27008694 0.62396678 0.94070405 0.2849127 0.68423676 0.90532631 0.90459952 0.92151043 0.59974342 0.45411693 0.11342193 0.70516271 0.88219066 0.72821262 0.94070405 0.09465967 0.94070405 0.60690495 0.02250968 0.32600829 0.69264124 0.88219066 0.79500924 0.52118044 0.77971909 0.94070405 0.86466465 0.88508586 0.08784893 0.6424183 0.78384819 0.77971909 0.82418994 0.89034748 0. 0.81854996 0.29415009 0.09222356 0.50276137 0.48749366 0.58708714 0.84058307 0.77953462 0.7713532 0.92151043 0.88313334 0.49627758 0.10918025 0.80488051 0.65845542 0.44254166 0.94070405 0.91762347 0.92151043 0.38884114 0.94070405 0.92151043 0.88508586 0.94070405 0.11971749 0.59217191 0.67585517 0.94070405 0.77971909 0.72775919 0.83407586 0.94070405 0.23008709 0.83514714 0.77971909 0.93533783 0.3714695 0.88464403 0. 0.49601688 0.51164985 0.6218872 0.86139315 0.57225205 0.41146609 0.07472116 0.94070405 0.88382682 0.18041259 0.79395903 0.43869894 0.38552886 0.57570353 0.41347527 0.94070405 0.94070405 0.88508586 0.86113562 0.89034748 0.88046279 0.94070405 0.52723207 0.89768744 0.58341587 0.77971909 0.51751904 0.80843058 0.2851571 0.94070405 0.6459937 0.94070405 0.76741657 0.06516033 0.95802584 0.92151043 0.84440653 0.77971909 0.82783373 0.82163262 0.04811703 0.88508586 0.94070405 0.79516061 0.81895563 0.34463159 0.92683427 0.94070405 0.88508586 0.87309917 0.26448191 0.6424183 0.73195805 0.77971909 0.92367782 0.26448191 0.94070405 0.81479518 0.4204927 0.88508586 0.92151043 0.88382682 0.26576284 0.88508586 0.90532631 0.94070405 0.77971909 0.25035915 0.53850526 0.61554918 0.90532631 0.55879117 0.75153108 0.757016 0.39199112 0.77421967 0.8074698 0.29623808 0.23232798 0.77971909 0.38309104 0.0122373 0.94070405 0.77971909 0.95428278 0.93541914 0.09465967 0.97737236 0.83195164 0.77894074 0.88382682 0.90532631 0.81895563 0.48658361 0.72276988 0.83514714 0.92151043 0.94070405 0.81008902 0.94070405 0.76741657 0.16055894 0.67687135 0.77971909 0.73955796 0.83514714 0.73377648 0.13088784 0.77971909 0.69120136 0.48487633 0.92367782 0.63169887 0.7253329 0.75366789 0.87644307 0.87309917 0.36724386 0.35503614 0. 0.83582908 0.94070405 0.92151043 0.87498367 0.41575278 0.83514714 0.61554918 0.77971909 0.25573618 0.04811703 0.77971909 0.34609843 0.92151043 0.89641524 0.65840902 0.92151043 0.94070405 0.82411846 0.94070405 0.16146892 0.88508586 0.45403708 0.94070405 0.8096277 0.63700282 0.88046279 0.78280947 0.79525698 0.92151043 0.31825026 0.90789505 0.14922644 0.57109064 0.85494232 0.8096277 0.64919865 0.77971909 0.08605848 0.84791636 0.80513213 0.4156438 0.88508586 0.66074833 0.89034748 0.11146298 0.88508586 0.76554458 0.92151043 0.94070405 0.94070405 0.90532631 0.77971909 0.64380586 0.70972035 0.90532631 0.04811703 0.92151043 0.33974567 0.58031222 0.92151043 0.92151043 0.88508586 0.94070405 0.84039895 0.88508586 0.88508586 0.84058307 0.88379917 0.76070421 0.88508586 0.26063012 0.88508586 0.92367782 0.09465967 0.74943025 0.85092669 0.14726108 0.67306094 0.51975967 0.38116613 0.88508586 0.79115731 0.04811703 0.82370975 0.91762347 0.64919865 0.94070405 0.24079654 0.94070405 0.76047747 0.7971817 0.77971909 0.73373088 0.35719023 0.37021036 0.77679554 0.50839417 0.90551043 0.89641524 0.88508586 0.82227722 0.92151043 0.2379788 0.84198115 0.94070405 0.94070405 0.04899257 0.25385147 0.40621502 0.10429103 0.74449425 0.94070405 0.60250829 0.88508586 0.71577686 0.94070405 0.94070405 0.31440268 0.83514714 ] ``` With numpy 1: ``` hall_of_fame = [ 348 39 295 345 276 268 443 253 87 91 120 429 242 343 112 238 118 277 326 430 249 67 131 189 165 201 382 203 360 154 358 151 148 397 212 399 303 403 75 245 292 467 497 496 2 492 16 27 28 486 485 308 43 290 51 469 170 317 63 282 59 147 69 346 257 36 307 372 453 315 60 156 321 396 53 409 441 231 155 482 14 357 437 76 102 428 383 296 95 173 240 194 393 50 243 440 113 133 239 465 ] est = [ max(sub(abs(X0), X6), min(X0, X6)), sub(min(sub(min(sqrt(X9), X6), neg(X0)), X6), neg(X0)), neg(X0), div(sub(X0, X2), mul(add(mul(inv(X9), min(X2, 0.107)), inv(inv(X1))), div(max(max(X7, X8), sub(X6, X6)), sub(sqrt(X9), sub(X0, -0.548))))), sub(sqrt(sqrt(abs(add(X5, X1)))), neg(X0)), log(add(min(mul(add(max(0.405, X3), log(X5)), inv(min(X7, X9))), abs(min(neg(X6), inv(X8)))), neg(mul(mul(add(X5, X6), add(X8, X3)), log(sub(X1, -0.516)))))), sub(min(sqrt(X9), X6), mul(X2, log(X4))), log(add(min(X2, X6), mul(X8, X1))), min(sqrt(X9), X6), mul(max(mul(abs(0.308), mul(X6, X0)), add(neg(X9), min(X4, -0.368))), sub(abs(max(X8, X1)), abs(log(X0)))) ] ``` With numpy 2: ``` hall_of_fame = [ 348 39 295 345 2 27 486 469 467 28 63 43 51 59 120 91 112 118 131 67 75 87 212 238 242 165 170 189 201 203 249 253 443 245 268 154 151 148 496 492 358 360 282 290 277 276 308 317 430 429 326 343 292 303 397 497 16 485 403 382 399 147 69 346 257 36 307 453 315 372 60 156 53 76 50 396 409 95 482 102 383 393 155 321 296 14 440 231 240 437 243 441 357 194 173 428 465 239 113 133 ] est = [ max(sub(abs(X0), X6), min(X0, X6)), sub(min(sub(min(sqrt(X9), X6), neg(X0)), X6), neg(X0)), X0, div(sub(X0, X2), mul(add(mul(inv(X9), min(X2, 0.107)), inv(inv(X1))), div(max(max(X7, X8), sub(X6, X6)), sub(sqrt(X9), sub(X0, -0.548))))), sub(sqrt(sqrt(abs(add(X5, X1)))), neg(X0)), log(add(min(mul(add(max(0.405, X3), log(X5)), inv(min(X7, X9))), abs(min(neg(X6), inv(X8)))), neg(mul(mul(add(X5, X6), add(X8, X3)), log(sub(X1, -0.516)))))), sub(min(sqrt(X9), X6), mul(X2, log(X4))), log(add(min(X2, X6), mul(X8, X1))), min(sqrt(X9), X6), mul(max(mul(abs(0.308), mul(X6, X0)), add(neg(X9), min(X4, -0.368))), sub(abs(max(X8, X1)), abs(log(X0)))) ] ```
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Numpy uses quicksort by default, causing unit test failure when numpy 2.0 released possibly due to internal behavior change.
We should always use stable sorting for deterministic behavior.
This change also implies
numpy>=1.15.0
to supportkind
.Should be OK since that is from mid 2018 and the earliest supported python listed is 3.8 from late 2019.
Some intermediate results:
With numpy 1:
With numpy 2: