Skip to content

Preferential Diversity (Variable Selection)

Latest
Compare
Choose a tag to compare
@vineet1992 vineet1992 released this 17 Jun 17:24
· 3 commits to Pref-Div-New-Workflow since this release

THE VARIABLE SELECTION JAR

The purpose of this jar file is to allow users to run the Preferential Diversity variable selection method with or without prior knowledge.
Graphical modeling structure learning algorithms can then be run on the selected variables.
Prior knowledge on relationships between variables can (optionally) be included in the analysis.

NOTE: THE INPUT FILE MUST BE A TAB-DELIMITED .TXT FILE

Usage: java -jar PrefDiv.jar

See Excel sheet for detailed description of parameters

Examples!

1. Select the top-50 variables without using prior knowledge

java -jar PrefDiv.jar -data data.txt -numSelect 50 -t Target

2. Select the top-50 variables using piPref-Div

java -jar PrefDiv.jar -data data.txt -numSelect 50 -t Target -priors Prior_Directory

3. Use an internal cross-validation to choose the number of variables to select based on prediction accuracy

java -jar PrefDiv.jar -data data.txt -cv 5 1,5,10,25,50,100 -t Target -priors Prior_Directory

4. Select the top-50 variables using piPref-Div but keep demographic data

java -jar PrefDiv.jar -data data.txt -numSelect 50 -t Target -priors Prior_Directory -keep Gender Age Race

5. Select the top-50 variables using piPref-Div and run StEPS to get a causal graph

java -jar PrefDiv.jar -data data.txt -numSelect 50 -t Target -priors Prior_Directory -keep Gender Age Race -useCausalGraph

6. Select the top-50 variables using piPref-Div and run piMGM to get a causal graph

java -jar PrefDiv.jar -data data.txt -numSelect 50 -t Target -priors Prior_Directory -keep Gender Age Race -useCausalGraph piMGM

7. Select the top-50 variables using piPref-Div and run StEPS to get a causal graph of the PCA summarized clusters

java -jar PrefDiv.jar -data data.txt -numSelect 50 -t Target -priors Prior_Directory -keep Gender Age Race -useCausalGraph -ctype pca