Skip to content

wtchu8/IRF_ML_SARSCoV2_pub

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

IRF_ML_SARSCoV2_pub

Classical machine learning to classify SARs-CoV-2 vs. Mock in NHP

When referencing this work, please cite:

Chu, W. T., Castro, M. A., Reza, S., Cooper, T. K., Bartlinski, S., Bradley, D., Anthony, S. M., Worwa, G., Finch, C. L., Kuhn, J. H., Crozier, I., & Solomon, J. (2023). Novel machine-learning analysis of SARS-CoV-2 infection in a subclinical nonhuman primate model using radiomics and blood biomarkers. Scientific Reports, 13(1), 19607. https://doi.org/10.1038/s41598-023-46694-9

Project Summary

Goal

  • Determine features most relevant to prediction of SARS-CoV-2 vs. Mock
  • Build a ML model for automatic classification of SARS-CoV-2 vs. Mock
    • Build a foundation for future work in severity classification & translation to humans

Data

  • 12 SARs-CoV-2 & 8 Mock Cynomolgus monkeys
  • 4 time points: BL, 2, 4, & 6 days post-infection
  • Radiomics measures calculated off of CT scan of lung & whole body
  • Clinical pathology and immunology measures calculated off of blood sample analyses

Approach & Notebook Organization

  1. Preprocessing
    a) Reshape & reformat radiomics data
    - Calculate change from baseline
    b) Reshape & reformat clinical pathology data
    - Calculate change from baseline
    c) Reshape & reformat immunology data
    - Calculate change from baseline
    d) Merge radiomics and clinical pathology data\
  2. Run exploratory analyses
    • Classic statistics
    • Data Visualization
  3. Feature Selection
    • Relevance threshold (f-stat, MI, chi2)
    • Minimum redundancy, maximum relevance (mRMR)
  4. Machine Learning
    • Models
    • Evaluation of performance
    • Effect of confounding variables
  5. Comparison of model performance

Citations

mRMR-Permute uses mRMR by Peng et al., please see the below citation for more information:

  • Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226–1238. https://doi.org/10.1109/TPAMI.2005.159

About

Machine learning to classify SARs-CoV-2 vs. Mock in NHP

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published