-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #57 from x-tabdeveloping/fastopic
Added FASTopic implementation with Turftopic API
- Loading branch information
Showing
4 changed files
with
381 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
import random | ||
from typing import Optional | ||
|
||
import torch | ||
import torch.nn.functional as F | ||
from torch import nn | ||
|
||
|
||
def pairwise_euclidean_distance(x, y): | ||
cost = ( | ||
torch.sum(x**2, axis=1, keepdim=True) | ||
+ torch.sum(y**2, dim=1) | ||
- 2 * torch.matmul(x, y.t()) | ||
) | ||
return cost | ||
|
||
|
||
class ETP(nn.Module): | ||
def __init__( | ||
self, | ||
sinkhorn_alpha, | ||
init_a_dist=None, | ||
init_b_dist=None, | ||
OT_max_iter=5000, | ||
stopThr=0.5e-2, | ||
): | ||
super().__init__() | ||
self.sinkhorn_alpha = sinkhorn_alpha | ||
self.OT_max_iter = OT_max_iter | ||
self.stopThr = stopThr | ||
self.epsilon = 1e-16 | ||
self.init_a_dist = init_a_dist | ||
self.init_b_dist = init_b_dist | ||
if init_a_dist is not None: | ||
self.a_dist = init_a_dist | ||
if init_b_dist is not None: | ||
self.b_dist = init_b_dist | ||
|
||
def forward(self, x, y): | ||
# Sinkhorn's algorithm | ||
M = pairwise_euclidean_distance(x, y) | ||
device = M.device | ||
if self.init_a_dist is None: | ||
a = (torch.ones(M.shape[0]) / M.shape[0]).unsqueeze(1).to(device) | ||
else: | ||
a = F.softmax(self.a_dist, dim=0).to(device) | ||
if self.init_b_dist is None: | ||
b = (torch.ones(M.shape[1]) / M.shape[1]).unsqueeze(1).to(device) | ||
else: | ||
b = F.softmax(self.b_dist, dim=0).to(device) | ||
u = (torch.ones_like(a) / a.size()[0]).to(device) # Kx1 | ||
K = torch.exp(-M * self.sinkhorn_alpha) | ||
err = 1 | ||
cpt = 0 | ||
while err > self.stopThr and cpt < self.OT_max_iter: | ||
v = torch.div(b, torch.matmul(K.t(), u) + self.epsilon) | ||
u = torch.div(a, torch.matmul(K, v) + self.epsilon) | ||
cpt += 1 | ||
if cpt % 50 == 1: | ||
bb = torch.mul(v, torch.matmul(K.t(), u)) | ||
err = torch.norm( | ||
torch.sum(torch.abs(bb - b), dim=0), p=float("inf") | ||
) | ||
transp = u * (K * v.T) | ||
loss_ETP = torch.sum(transp * M) | ||
return loss_ETP, transp | ||
|
||
|
||
class fastopic(nn.Module): | ||
def __init__( | ||
self, | ||
num_topics: int, | ||
theta_temp: float = 1.0, | ||
DT_alpha: float = 3.0, | ||
TW_alpha: float = 2.0, | ||
random_state: Optional[int] = None, | ||
): | ||
super().__init__() | ||
|
||
self.num_topics = num_topics | ||
self.DT_alpha = DT_alpha | ||
self.TW_alpha = TW_alpha | ||
self.theta_temp = theta_temp | ||
self.seed = random_state or random.randint(0, 10_000) | ||
self.epsilon = 1e-12 | ||
|
||
def init(self, vocab_size: int, embed_size: int): | ||
torch.manual_seed(self.seed) | ||
self.word_embeddings = nn.init.trunc_normal_( | ||
torch.empty(vocab_size, embed_size) | ||
) | ||
self.word_embeddings = nn.Parameter(F.normalize(self.word_embeddings)) | ||
self.topic_embeddings = torch.empty((self.num_topics, embed_size)) | ||
nn.init.trunc_normal_(self.topic_embeddings, std=0.1) | ||
self.topic_embeddings = nn.Parameter( | ||
F.normalize(self.topic_embeddings) | ||
) | ||
self.word_weights = nn.Parameter( | ||
(torch.ones(vocab_size) / vocab_size).unsqueeze(1) | ||
) | ||
self.topic_weights = nn.Parameter( | ||
(torch.ones(self.num_topics) / self.num_topics).unsqueeze(1) | ||
) | ||
self.DT_ETP = ETP(self.DT_alpha, init_b_dist=self.topic_weights) | ||
self.TW_ETP = ETP(self.TW_alpha, init_b_dist=self.word_weights) | ||
|
||
def get_transp_DT( | ||
self, | ||
doc_embeddings, | ||
): | ||
torch.manual_seed(self.seed) | ||
topic_embeddings = self.topic_embeddings.detach().to( | ||
doc_embeddings.device | ||
) | ||
_, transp = self.DT_ETP(doc_embeddings, topic_embeddings) | ||
return transp.detach().cpu().numpy() | ||
|
||
# only for testing | ||
def get_beta(self): | ||
torch.manual_seed(self.seed) | ||
_, transp_TW = self.TW_ETP(self.topic_embeddings, self.word_embeddings) | ||
# use transport plan as beta | ||
beta = transp_TW * transp_TW.shape[0] | ||
return beta | ||
|
||
# only for testing | ||
def get_theta(self, doc_embeddings, train_doc_embeddings): | ||
torch.manual_seed(self.seed) | ||
topic_embeddings = self.topic_embeddings.detach().to( | ||
doc_embeddings.device | ||
) | ||
dist = pairwise_euclidean_distance(doc_embeddings, topic_embeddings) | ||
train_dist = pairwise_euclidean_distance( | ||
train_doc_embeddings, topic_embeddings | ||
) | ||
exp_dist = torch.exp(-dist / self.theta_temp) | ||
exp_train_dist = torch.exp(-train_dist / self.theta_temp) | ||
theta = exp_dist / (exp_train_dist.sum(0)) | ||
theta = theta / theta.sum(1, keepdim=True) | ||
return theta | ||
|
||
def forward(self, train_bow, doc_embeddings): | ||
torch.manual_seed(self.seed) | ||
loss_DT, transp_DT = self.DT_ETP(doc_embeddings, self.topic_embeddings) | ||
loss_TW, transp_TW = self.TW_ETP( | ||
self.topic_embeddings, self.word_embeddings | ||
) | ||
loss_ETP = loss_DT + loss_TW | ||
theta = transp_DT * transp_DT.shape[0] | ||
beta = transp_TW * transp_TW.shape[0] | ||
# Dual Semantic-relation Reconstruction | ||
recon = torch.matmul(theta, beta) | ||
loss_DSR = ( | ||
-(train_bow * (recon + self.epsilon).log()).sum(axis=1).mean() | ||
) | ||
loss = loss_DSR + loss_ETP | ||
rst_dict = { | ||
"loss": loss, | ||
} | ||
return rst_dict |
Oops, something went wrong.