Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add concatenate datasets method #148

Merged
merged 4 commits into from
Aug 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion src/pie_datasets/core/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
from .builder import ArrowBasedBuilder, GeneratorBasedBuilder
from .dataset import Dataset, IterableDataset
from .dataset import Dataset, IterableDataset, concatenate_datasets
from .dataset_dict import DatasetDict, load_dataset

__all__ = [
Expand All @@ -9,4 +9,5 @@
"IterableDataset",
"DatasetDict",
"load_dataset",
"concatenate_datasets",
]
48 changes: 48 additions & 0 deletions src/pie_datasets/core/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -662,3 +662,51 @@ def get_pie_dataset_type(
raise TypeError(
f"the dataset must be of type Dataset or IterableDataset, but is of type {type(hf_dataset)}"
)


def _add_dset_name_to_document(doc: Document, name: str) -> Document:
if not hasattr(doc, "metadata"):
raise ValueError(
f"Document does not have metadata attribute which required to save the dataset name: {doc}"
)
if "dataset_name" in doc.metadata:
raise ValueError(
f"Document already has a dataset_name attribute: {doc.metadata['dataset_name']}"
)
doc.metadata["dataset_name"] = name
return doc


def concatenate_datasets(
dsets: Union[
List[Dataset], List[IterableDataset], Dict[str, Dataset], Dict[str, IterableDataset]
]
) -> Union[Dataset, IterableDataset]:
"""Concatenate multiple datasets into a single dataset. The datasets must have the same
document type.

Args:
dsets: A list of datasets or a dictionary with dataset names as keys and datasets as values. If
a dictionary is provided, the dataset names will be added to the documents as metadata.
Returns:
A new dataset that is the concatenation of the input datasets.
"""

if isinstance(dsets, dict):
dsets = [
dset.map(_add_dset_name_to_document, fn_kwargs={"name": name})
for name, dset in dsets.items()
]

if len(dsets) == 0:
raise ValueError("No datasets to concatenate")

document_type = dsets[0].document_type
for doc in dsets[1:]:
if not doc.document_type == document_type:
raise ValueError("All datasets must have the same document type to concatenate")

result_hf = datasets.concatenate_datasets(dsets)
pie_dataset_type = get_pie_dataset_type(dsets[0])

return pie_dataset_type.from_hf_dataset(result_hf, document_type=document_type)
95 changes: 94 additions & 1 deletion tests/unit/core/test_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,11 @@
from pytorch_ie.taskmodules import TransformerSpanClassificationTaskModule

from pie_datasets import Dataset, IterableDataset
from pie_datasets.core.dataset import get_pie_dataset_type
from pie_datasets.core.dataset import (
_add_dset_name_to_document,
concatenate_datasets,
get_pie_dataset_type,
)
from tests.conftest import TestDocument
from tests.unit.core import TEST_PACKAGE

Expand Down Expand Up @@ -479,3 +483,92 @@ def _empty_docs():
with pytest.raises(ValueError) as excinfo:
dataset_class.from_documents(_empty_docs)
assert str(excinfo.value) == "No documents to create dataset from"


@pytest.mark.parametrize("as_list", [False, True])
def test_concatenate_datasets(maybe_iterable_dataset, dataset_with_converter_functions, as_list):
# Tests four different cases of concatenation of list/dict of Datasets/IterableDatasets
if as_list:
# Test concatenation of list of datasets
concatenated_dataset = concatenate_datasets(
[
maybe_iterable_dataset["train"],
maybe_iterable_dataset["validation"],
maybe_iterable_dataset["test"],
]
)
else:
# Test concatenation of dictionary of datasets
concatenated_dataset = concatenate_datasets(maybe_iterable_dataset)

# Check correct output type
if isinstance(maybe_iterable_dataset["train"], IterableDataset):
# if input is IterableDataset, output should be IterableDataset
assert isinstance(concatenated_dataset, IterableDataset)
elif isinstance(maybe_iterable_dataset["train"], Dataset):
# if input is Dataset, output should be Dataset
assert isinstance(concatenated_dataset, Dataset)
else:
raise ValueError("Unexpected input type")

concatenated_dataset = list(concatenated_dataset)

for doc in concatenated_dataset:
assert isinstance(doc, TextBasedDocument)
if not as_list:
# If input is dictionary, check that dataset_name is added to metadata
assert doc.metadata["dataset_name"] is not None
assert doc.metadata["dataset_name"] in ["test", "train", "validation"]

assert len(concatenated_dataset) == 12

assert [concatenated_dataset[i].id for i in [0, 8, 10]] == [
"train_doc1",
"val_doc1",
"test_doc1",
]
assert [doc.id for doc in concatenated_dataset[7:11]] == [
"train_doc8",
"val_doc1",
"val_doc2",
"test_doc1",
]


def test_concatenate_datasets_errors(dataset_with_converter_functions):
# Test concatenation of empty datasets
empty_dataset = list[Dataset]()
with pytest.raises(ValueError) as excinfo:
concatenate_datasets(empty_dataset)
assert str(excinfo.value) == "No datasets to concatenate"

# Test concatenation of datasets with different document types
dataset_with_converted_doc = dataset_with_converter_functions.to_document_type(
TestDocumentWithLabel
)
with pytest.raises(ValueError) as excinfo:
concatenate_datasets([dataset_with_converter_functions, dataset_with_converted_doc])
assert str(excinfo.value) == "All datasets must have the same document type to concatenate"


def test_add_dset_name_to_document():
# Test document having no metadata attribute
doc = Document()
assert not hasattr(doc, "metadata")
with pytest.raises(ValueError) as excinfo:
_add_dset_name_to_document(doc, "test")
assert (
str(excinfo.value)
== "Document does not have metadata attribute which required to save the dataset name: Document()"
)

# Test adding dataset name to document
doc.metadata = {}
assert hasattr(doc, "metadata")
_add_dset_name_to_document(doc, "test_dataset_name")
assert doc.metadata["dataset_name"] == "test_dataset_name"

# Test document already having dataset_name in metadata
with pytest.raises(ValueError) as excinfo:
_add_dset_name_to_document(doc, "test")
assert str(excinfo.value) == "Document already has a dataset_name attribute: test_dataset_name"
Loading