-
Notifications
You must be signed in to change notification settings - Fork 146
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
MAGNN random metapath updated #175
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -11,7 +11,7 @@ | |
from dgl.utils import expand_as_pair | ||
from operator import itemgetter | ||
from . import BaseModel, register_model | ||
|
||
import random | ||
from sklearn.model_selection import train_test_split | ||
from sklearn.metrics import f1_score | ||
from sklearn.svm import LinearSVC | ||
|
@@ -67,21 +67,28 @@ class MAGNN(BaseModel): | |
@classmethod | ||
def build_model_from_args(cls, args, hg): | ||
ntypes = hg.ntypes | ||
if args.dataset == 'imdb4MAGNN': | ||
# build model | ||
metapath_list = ['M-D-M', 'M-A-M', 'D-M-D', 'D-M-A-M-D', 'A-M-A', 'A-M-D-M-A'] | ||
edge_type_list = ['A-M', 'M-A', 'D-M', 'M-D'] | ||
# in_feats: {'n1type': n1_dim, 'n2type', n2_dim, ...} | ||
in_feats = {'M': 3066, 'D': 2081, 'A': 5257} | ||
dataset_list = ['imdb4MAGNN','dblp4MAGNN'] | ||
if args.dataset in dataset_list: | ||
edge_type_list = hg.etypes | ||
metapath_list = [] | ||
metapath_list = metapath_list + metapath_generator(ntypes,edge_type_list,5,2) | ||
metapath_list = metapath_list + metapath_generator(ntypes,edge_type_list,3,2) | ||
metapath_idx_dict = mp_instance_sampler(hg, metapath_list, 'imdb4MAGNN') | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Change line76 into |
||
|
||
elif args.dataset == 'dblp4MAGNN': | ||
# build model | ||
metapath_list = ['A-P-A', 'A-P-T-P-A', 'A-P-V-P-A'] | ||
edge_type_list = ['A-P', 'P-A', 'P-T', 'T-P', 'P-V', 'V-P'] | ||
# in_feats: {'n1type': n1_dim, 'n2type', n2_dim, ...} | ||
in_feats = {'A': 334, 'P': 14328, 'T': 7723, 'V': 20} | ||
metapath_idx_dict = mp_instance_sampler(hg, metapath_list, 'dblp4MAGNN') | ||
# if args.dataset == 'imdb4MAGNN': | ||
# # build model | ||
# metapath_list = ['M-D-M', 'M-A-M', 'D-M-D', 'D-M-A-M-D', 'A-M-A', 'A-M-D-M-A'] | ||
# edge_type_list = hg.etypes | ||
# # in_feats: {'n1type': n1_dim, 'n2type', n2_dim, ...} | ||
# in_feats = {'M': 3066, 'D': 2081, 'A': 5257} | ||
# metapath_idx_dict = mp_instance_sampler(hg, metapath_list, 'imdb4MAGNN') | ||
# | ||
# elif args.dataset == 'dblp4MAGNN': | ||
# # build model | ||
# metapath_list = ['A-P-A', 'A-P-T-P-A', 'A-P-V-P-A'] | ||
# edge_type_list = ['A-P', 'P-A', 'P-T', 'T-P', 'P-V', 'V-P'] | ||
# # in_feats: {'n1type': n1_dim, 'n2type', n2_dim, ...} | ||
# in_feats = {'A': 334, 'P': 14328, 'T': 7723, 'V': 20} | ||
# metapath_idx_dict = mp_instance_sampler(hg, metapath_list, 'dblp4MAGNN') | ||
|
||
else: | ||
raise NotImplementedError("MAGNN on dataset {} has not been implemented".format(args.dataset)) | ||
|
@@ -190,8 +197,8 @@ def forward(self, g, feat_dict=None): | |
feat_dict : dict | ||
the feature matrix dict of different node types, e.g {'M':feat_of_M, 'D':feat_of_D, ...} | ||
|
||
Returns | ||
------- | ||
Returns | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Unsuitable change. |
||
dict | ||
The predicted logit after the output projection. e.g For the predicted node type, such as M(movie), | ||
dict['M'] contains the probability that each node is classified as each class. For other node types, such as | ||
|
@@ -591,3 +598,23 @@ def svm_test(X, y, test_sizes=(0.2, 0.4, 0.6, 0.8), repeat=10): | |
result_macro_f1_list.append((np.mean(macro_f1_list), np.std(macro_f1_list))) | ||
result_micro_f1_list.append((np.mean(micro_f1_list), np.std(micro_f1_list))) | ||
return result_macro_f1_list, result_micro_f1_list | ||
|
||
|
||
def metapath_generator(ntypes,etypes,length,num): | ||
ntypes_num = len(ntypes) | ||
metapath_list = [] | ||
for i in range(num): | ||
temp = "" | ||
random_index = random.randrange(ntypes_num) | ||
temp = temp + ntypes[random_index] | ||
for j in range(length-1): | ||
temp = temp + '-' | ||
random_index = random.randrange(ntypes_num) | ||
temp_e = temp[-2] + '-' + ntypes[random_index] | ||
while temp_e not in etypes: | ||
random_index = random.randrange(ntypes_num) | ||
temp_e = temp[-2] + '-' + ntypes[random_index] | ||
temp = temp + ntypes[random_index] | ||
if temp not in metapath_list: | ||
metapath_list.append(temp) | ||
return metapath_list | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. MAGNN model request all metapath in metapath_list to be symmetric. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Variable named "in_feats“ ignored.