Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add tests for bml_add_norm #533

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 32 additions & 10 deletions tests/C-tests/add_matrix_typed.c
Original file line number Diff line number Diff line change
Expand Up @@ -20,11 +20,13 @@ int TYPED_FUNC(
const int M)
{
bml_matrix_t *A = NULL;
bml_matrix_t *B = NULL;
bml_matrix_t *B_1 = NULL;
bml_matrix_t *B_2 = NULL;
bml_matrix_t *C = NULL;

REAL_T *A_dense = NULL;
REAL_T *B_dense = NULL;
REAL_T *B_1_dense = NULL;
REAL_T *B_2_dense = NULL;
REAL_T *C_dense = NULL;

bml_distribution_mode_t distrib_mode = sequential;
Expand All @@ -39,23 +41,29 @@ int TYPED_FUNC(
double alpha = 1.2;
double beta = 0.8;
double threshold = 0.0;
double trace_norm = 0.0;

int max_row = MIN(N, PRINT_THRESHOLD);
int max_col = MIN(N, PRINT_THRESHOLD);

LOG_DEBUG("rel. tolerance = %e\n", REL_TOL);

A = bml_random_matrix(matrix_type, matrix_precision, N, M, distrib_mode);
B = bml_copy_new(A);
B_1 = bml_copy_new(A);
B_2 = bml_copy_new(A);
C = bml_random_matrix(matrix_type, matrix_precision, N, M, distrib_mode);

LOG_DEBUG("bml_add...\n");
bml_add(B, C, alpha, beta, threshold);
bml_add(B_1, C, alpha, beta, threshold);

LOG_DEBUG("bml_add_norm...\n");
trace_norm = bml_add_norm(B_2, C, alpha, beta, threshold);

LOG_INFO("alpha = %f \n ", alpha);
LOG_INFO("beta = %f \n ", beta);
A_dense = bml_export_to_dense(A, dense_row_major);
B_dense = bml_export_to_dense(B, dense_row_major);
B_1_dense = bml_export_to_dense(B_1, dense_row_major);
B_2_dense = bml_export_to_dense(B_2, dense_row_major);
C_dense = bml_export_to_dense(C, dense_row_major);

if (bml_getMyRank() == 0)
Expand All @@ -67,29 +75,43 @@ int TYPED_FUNC(
bml_print_dense_matrix(N, matrix_precision, dense_row_major, C_dense,
0, max_row, 0, max_col);
LOG_INFO("B = alpha A + beta C \n");
bml_print_dense_matrix(N, matrix_precision, dense_row_major, B_dense,
bml_print_dense_matrix(N, matrix_precision, dense_row_major, B_1_dense,
0, max_row, 0, max_col);

double expected_trace_norm = 0.0;
for (int i = 0; i < N * N; i++)
{
double expected = alpha * A_dense[i] + beta * C_dense[i];
double rel_diff_val = (expected - B_dense[i]) / expected;
double rel_diff_val = (expected - B_1_dense[i]) / expected;
double rel_diff = fabs(rel_diff_val);
if (rel_diff > REL_TOL)
{
LOG_ERROR
("matrices are not identical; expected[%d] = %e, B[%d] = %e\n",
i, expected, i, B_dense[i]);
i, expected, i, B_1_dense[i]);
return -1;
}
expected_trace_norm += expected * expected;
}
expected_trace_norm = sqrt(expected_trace_norm);
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@cnegre The ellsort implementation returns the square of the norm. What is the expected output; the norm or the square of the norm?

double rel_diff_val = (expected_trace_norm - trace_norm) / expected_trace_norm;
double rel_diff = fabs(rel_diff_val);
if (rel_diff > REL_TOL)
{
LOG_ERROR
("trace norm is incorrect; expected = %e but found = %e\n",
expected_trace_norm, trace_norm);
return -1;
}
bml_free_memory(A_dense);
bml_free_memory(B_dense);
bml_free_memory(B_1_dense);
bml_free_memory(B_2_dense);
bml_free_memory(C_dense);
}

bml_deallocate(&A);
bml_deallocate(&B);
bml_deallocate(&B_1);
bml_deallocate(&B_2);
bml_deallocate(&C);

LOG_INFO("add matrix test passed\n");
Expand Down